

Concrete Pavements

Program 000003

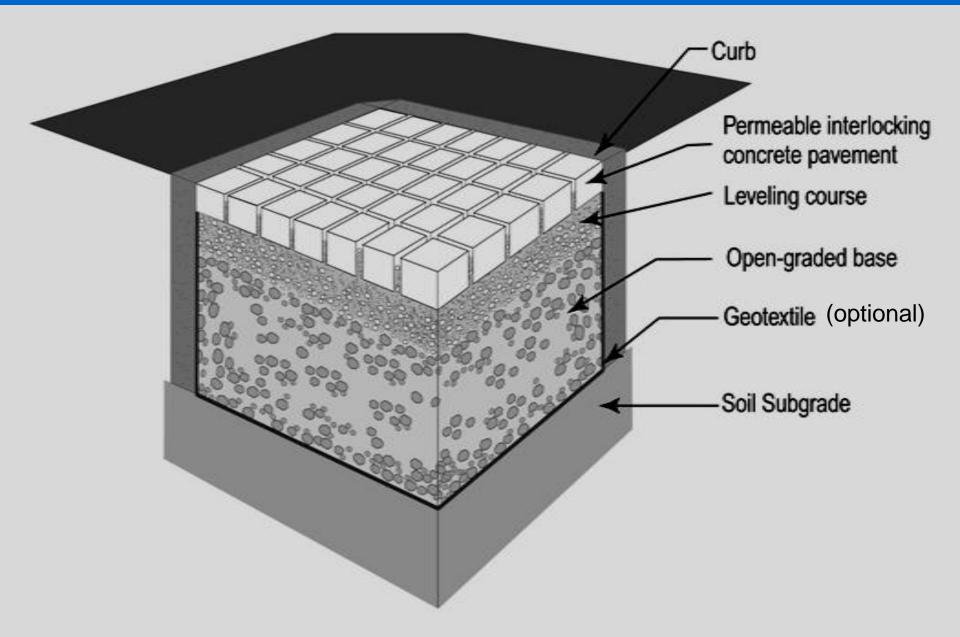
Revised 1-29-08

Permeable Interlocking Concrete Pavements

This program is registered with the AIA/CES and ASLA CPE for c education professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA or ASLA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation. Program 000003

Permeable Interlocking Concrete Pavements election • Design • Construction • Maintenance

David R. Smith Third Edition



Learning objectives:

- Know how to select PICP
- Understand types of exfiltration options for the base and when each are applied
- Understand the hydrological and structural design principles for the pavement base
- Know the components of a **PICP construction specification**
- Understand maintenance requirements of PICPs

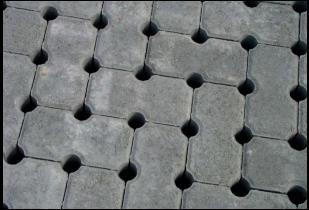
PICP System Components

Stormwater Management Objectives

Some Approaches...

- **Retain/infiltrate increased volume & flows**
- Capture first flush, e.g. first ¹/₂-1 in. (13 mm)
- Control specific nutrients, metals
- Imitate pre-development conditions
- Capture percentage of storms

Permeable pavements address all approaches


Why Use Permeable Pavers?

Benefits

- Part of BMP mix; supports LID
- Conserves space: pavement on detention facility
- 100% runoff reduction for high frequency storms
- Reduce retention/detention, drainage fees
- Filter and reduce nutrients, metals
- Increase groundwater recharge

Paver Types Interlocking shapes/patterns

Paver Types Enlarged Joints: 10 mm

Built-in concrete joint spacers

Paver Types

Porous concrete units Zero fines concrete

For non-freezing climates Surface: high clogging potential Install with enlarged joints for additional drainage

Application Guide for Permeable Segmental Concrete Pavements

	Interlocking Shapes w/openings	Enlarged Joints & Spacers	Porous Concrete Units	Grid Pavers w/Grass
Low speed Roads	Contact manufacturer	Contact manufacturer	Contact manufacturer	Contact manufacturer
Parking lots Driveways	Excellent	Excellent	Not Recommended	Acceptable for low use
Overflow parking, fire lanes	Excellent	Excellent	Not recommended	Good
Revetments Boat ramps	Good	Good	Not Recommended	Good
Bike paths, Sidewalks	Good	Good	Excellent	Not Recommended

Site Opportunities

No space for parking <u>&</u> detention pond 40%+ impervious cover / urbanized uses Storm sewer system near/at capacity Impervious cover limitations Contributing drainage area

 \bullet

Project Examples

Residential Driveways

Residential roads

Cul-de-sacs in residential roads

Glen Brook Green Subdivision Waterford, CT Jordon Cove Watershed US EPA Section 319 NMP

Project Profiles

Permeable Interlocking Concrete Pavements

Santa Clarita, CA

Hilton Garden Inn Calabasas, CA

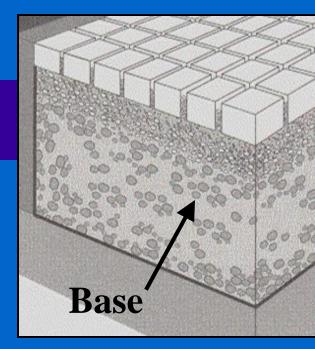
Boat ramp

Tree preservation

Somerset Street Ocean City, MD

OP

Parking lots

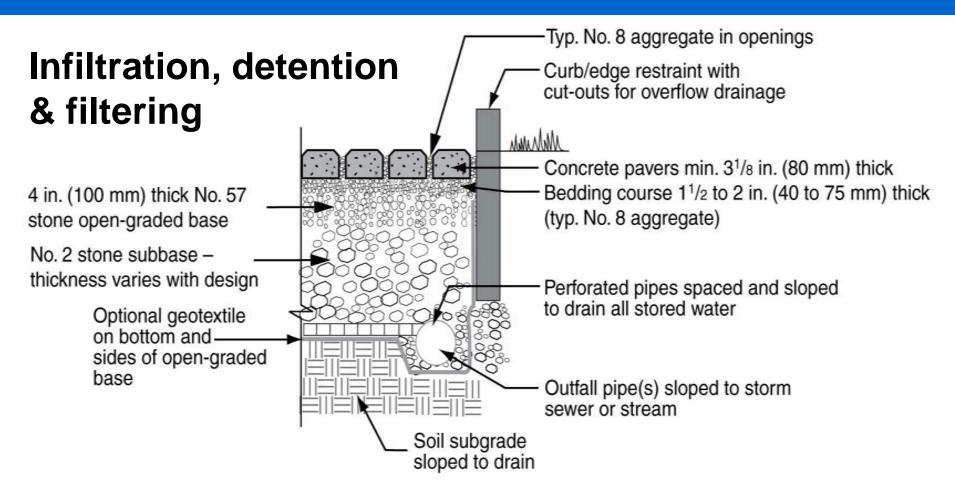

Lowe's Home Center Olympia, WA

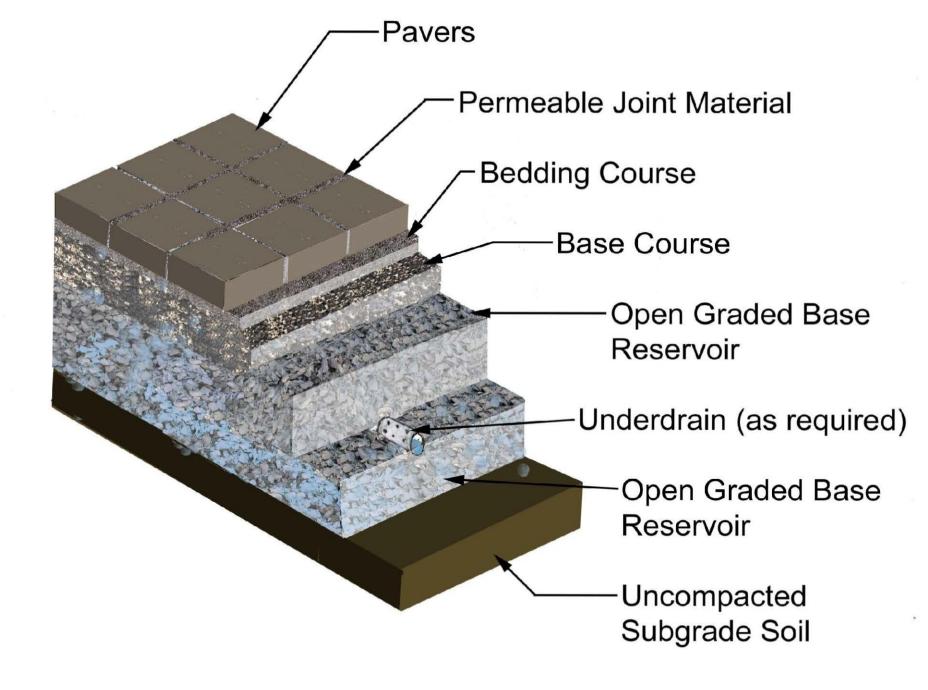
Infiltration Rates Surface, Joints & Bedding-

Void ratio, 8% to 18% Required infiltration rate of openings: Design storm, in. per hr / 0.08 Example: 2 in. per hr / 0.08 Required infiltration rate = 25 in./hr Infiltration rate of stone in openings: 300 to 500 in./hr Assume 10% lifetime efficiency: 30 to 50 in./hr

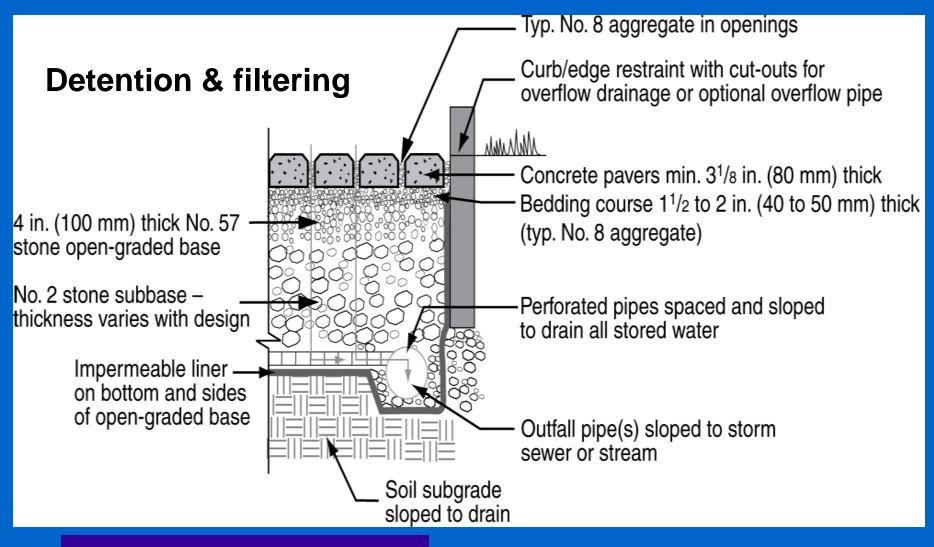
Base Storage Capacity

Base materials No. 57 crushed stone base or similar 1.5 - 1/8 in. aggregate




No. 2 crushed stone subbase or similar
2¹/₂ in. - ³/₄ in. aggregate
~ 30% to 40% void space
2.5 to 3 in. of base stores about 1 in. of water
Design for 24 - <u>72 hour storage</u>

1. Full Exfiltration – Figure 12



2. Partial Exfiltration – Figure 13

3. No Exfiltration – Figure 14

Soil Infiltration

Establish suitability Soil maps NRCS soil classification (ABCD) USCS soil classification *Conduct on-site infiltration tests* Subgrade Infiltration Determining soil infiltration rates Dig holes on the site Approx. top-of-subgrade depth Double ring infiltrometer test Use lowest infiltration rate

Pollutant Removal – Figure 27

	Infiltration Trench Design Type*			Infiltration Trenches
Pollutant	0.5 in. (13 mm) of Runoff per Impervious acre	1.0 in. (25 mm) of Runoff per Impervious acre	2-year Design Storm Treatment	& Porous Pavement Median Pollutant Removal**
Total Suspended Solids	60-80	80-100	80-100	95
Total Phosphorous	40-60	40-60	60-80	70
Total Nitrogen	40-60	40-60	60-80	51
Biological Oxygen Demand	60-80	60-80	80-100	
Bacteria	60-80	60-80	80-100	
Metals	60-80	60-80	80-100	99 (Zn)

Design Details

Overflow and concrete edge restraints

Design for the Disabled

Combine solid & permeable

Design for Performance Monitoring

- Observation well at lowest point
- Min. 6 in. (150 mm) dia. perf pipe w/cap
- Monitor drainage rate, sediment, water quality
- Cap hides under

pavers

No. 2 stone subbase

Morton Arboretum Lisle, Illinois

Construction

Screeding bedding layer over stone base

Edges cut, placed then compacted

Construction

Construction — Mechanical Installation

Construction

Filling the openings with No. 8 stone before compaction

Compaction of pavers

Excess stones removed, then final compaction

IIIII

CHEVROLET

- Trill-

~ 1550

ACID

Costs

Assumptions: 31/8" thick pavers, 2 in. bedding layer 12 in. base... 15-20,000 s.f. \$7 to \$10/s.f.

Does *not* include design, curbs, or pipe costs

Sustainable Design through LEED v2.2

- "Sustainable" = Development that meets the needs of the present without compromising the ability of future generations to meet their own needs
- Considers the triple-bottom-line: social, economic & environmental impacts
- LEED = Leadership in Energy & Environmental Design rating system v2.2

US Green Building Council www.usgbc.org

LEED rating levels for project certification

 \bullet

۲

Certified26 – 32 pointsSilver33 – 38 pointsGold39 – 51 pointsPlatinum52 or greater

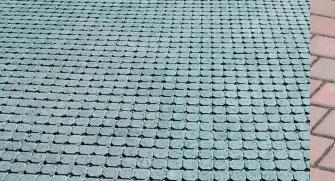
Types of projects: New construction LEED-NC Existing buildings Commercial interiors Building core & shell Homes

LEED credits offered when projects....

- Decrease pollution through sustainable sites
- Increase building water use efficiency
- Reduce energy and atmospheric pollutants
- Conserve minerals and resources
- Improve indoor air quality
- Offer innovative ideas and designs
- Offer innovative upgrades, operations & maintenance

 \bullet

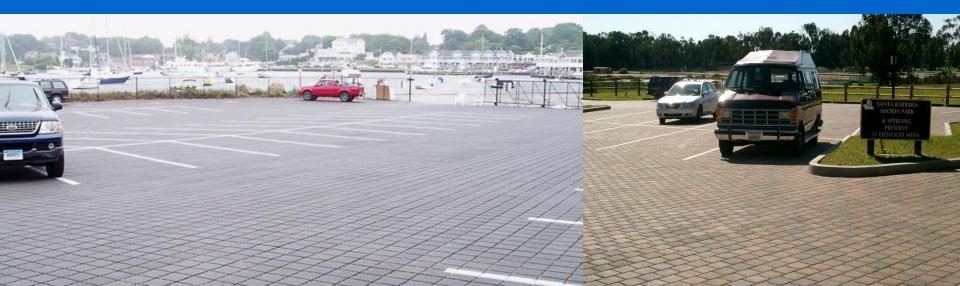
Decrease runoff through Sustainable Sites


LEED Points

Credit 6.1 Stormwater design: Quantity control

<50% site imperviousness Reduce to pre-development peak discharge & quantity for a 2 year, 24-hour storm

>50% site imperviousness 25% volume decrease from 2 year, 24-hour storm Achieve both objectives with permeable interlocking concrete pavements


Decrease runoff through Sustainable Sites

LEED Points

Credit 6.2 Stormwater design: Quality control

Capture & treat 90% of average annual Rainfall (0.5 to 1 in. depending on region) Remove 80% of total suspended solids

Achieve 80% TSS removal with permeable Interlocking concrete pavements – proven by research

Credit 7.1 Heat Island Effect: Non-roof


50% of site hardscape using Tree shade in 5 years Paving with minimum 29 Solar Reflectance Index (SRI) Grid pavement OR Place parking under roof or ground Minimum 29 SRI on roof or deck

LEED Points

Credit 7.2 Heat Island Effect: Roof

At least 75% roof with minimum 29 Solar Reflectance Index (SRI) OR At least 50% vegetated roof OR Low slope roof with min 78 SRI

LEED Points

Conservation of materials and resources

Credit

LEED Points

3.1	5% reused content (i.e. crushed concrete)	1
3.2	10% reused content	1
4.1	5% recycled waste content (e.g. flyash)	1
4.2	10% recycled waste content	1
5.1	20% manufactured regionally (<500 mi.)	1
5.2	50% materials extracted regionally (<500 mi.)	1

۲

۲

۲

See ICPI Tech Spec 16 on LEED points from pavers

Questions?

You deserve a break.

Thank you! <u>www.icpi.org</u> icpi@icpi.org

Interlocking Concrete Pavement Institute