

January 23, 2017 Revised March 15, 2017 Revised April 20, 2017

Joni Brinkman, AICP, Principal Urban Design Kilday Studios 610 Clematis Street, Suite CU02 West Palm Beach, Florida 33401

RE: Surf Ranch at Palm Beach Park of Commerce

Palm Beach County, Florida Kimley-Horn #140346000

Dear Ms. Brinkman:

Pursuant to your request, Kimley-Horn has performed a traffic statement for the proposed development to be located within Palm Beach Park of Commerce. The site location is provided in *Figure 1* and a site plan is included for reference. The site is proposed to be a surf park with a wave lagoon that produces artificial waves for professional surfers and surf camp attendees.

BACKGROUND

Palm Beach Park of Commerce is located at the northeast corner of State Route 710 (Beeline Highway) and Pratt Whitney Road in Palm Beach County, Florida. A Development of Regional Impact (DRI) application was filed for the project in the early 1980's. Various approvals and vesting were issued. In 1992, a vesting determination and agreement was made by Palm Beach County and the property owner concluding that 6.25 million square feet was approved in addition to the approximately 200,000 square feet of industrial land use that existed in 1992, at the time of the vesting determination. In 2006, concurrency vesting for the Park was further approved for 6,893 new external peak hour trips.

TRIP GENERATION

Trip generation was based on projected employees and guests for a typical day (non-event) provided by the managing director for AW Property. The trip generation rates used to calculate daily, AM peak hour, and PM peak hour trips were developed based on the assumption that employees will enter the development during the AM peak hour and exit the development during the PM peak hour and that the majority of patrons will enter and exit the development during the PM peak hour. Information provided by the managing director is attached to this document. As summarized in *Table 1*, the proposed site is expected to generate 120 net new daily trips, 23 net new external AM peak hour trips (23 in, 0 out), and 48 net new external PM peak hour trips (19 in, 29 out).

	TABLE 1
	TRIP GENERATION
Ρ	PALM BEACH PARK OF COMMERCE
	SLIRE DANICH

		0011	10 11 1011							
Land Use	ln:	tensity	Daily	ΑN	1 Peak Ho	our	PM Peak Hour			
Land Ose	11 1	terisity	Trips	Total	In	Out	Total	ln	Out	
Proposed Development										
Surf Ranch	10	employees	20	10	10	0	10	0	10	
Surf Ranch	50	guests	100	13	13	0	38	19	19	
Subtotal			120	23	23	0	48	19	29	
Driveway Volumes			120	23	23	0	48	19	29	
Net New External Trips			120	23	23	0	48	19	29	

Trip generation was calculated using the following data:

Daily Trip Generation

Surf Ranch (per employee) = 2 trips/employee Surf Ranch (per guest) = 2 trips/guest AM Peak Hour Trip Generation

Surf Ranch (per employee) = T = 1 trip/employee (100% in, 0% out) Surf Ranch (per guest) = T = 0.25 trips/guest (100% in, 0% out)

PM Peak Hour Trip Generation

Surf Ranch (per employee) = T = 1 trip/employee (0% in, 100% out) Surf Ranch (per guest) = T = 0.75 trips/guest (50% in, 50% out)

 $k: wpb_tpto\1403\1403\46000 - palm\ beach\ park\ of commerce \setminus [2017-04-17\ surfranch\ 2.x lsx] tgen\ 1\ to\ 1\ 4/19/2017\ 17:49$

2016 MONITORING STUDY

A Traffic Monitoring Study was prepared and submitted to Palm Beach County in 2016 which evaluated the current traffic conditions on roadways adjacent to the Florida Research Park. The study concluded that significant unused capacity exists on Beeline Highway and Pratt Whitney Road. Furthermore, traffic signalization at any of the Park's existing entrances to Beeline Highway and Pratt Whitney Road is not currently warranted.

ANALYSIS OF BEELINE HIGHWAY & PRATT WHITNEY ROAD

A detailed analysis of this existing intersection was conducted using *HCS*+ software. The intersection analysis prepared for the annual monitoring study was updated to include the impacts of this project. Existing turning movement counts were collected on March 8, 2017 during the AM and PM peak hours of 7:00 AM-9:00 AM and 4:00 PM-6:00 PM. The turning movement counts are attached to this document. Existing signal timing information provided by the Palm Beach County Traffic Division was utilized in this analysis and is attached.

Data from the Palm Beach County Traffic Division for this intersection was unavailable; therefore, a nominal 1% growth rate and a buildout year of 2021 was used for the analysis. As shown in the attached *HCS*+ worksheets and *Table 2*, the signalized intersection is expected to operate at Level of Service (LOS) D or better during the AM and PM peak hours with existing timing.

Queuing is not expected to occur in the northbound right and southbound right directions due to the existing free flow conditions for those movements. As shown in the attached *Table 3*, average queue spacing was calculated for each movement based on the percentage of project traffic, Project Beach Ball traffic, and non-project traffic expected for that movement. Half of the Project Beach Ball traffic was assumed to require 75 feet of queue space to serve delivery trucks at the intersection due to the truck-related nature of that development. All project traffic and non-project traffic was assumed to require the typical 25 feet of queue space; the Surf Ranch use is not expected to generate significant truck and trailer traffic. As shown in the attached Back-of-Queue worksheets, queues are expected to be contained within the existing storage lanes during the AM peak hour. Queues are expected to exceed the existing storage length during the PM peak hour. The existing storage length is 320 feet; the proposed storage length is 485 feet.

		TABLE 2							
	LEVEL C	OF SERVICE ANALYSIS							
	PALM BEA	CH PARK OF COMMERCE							
		SURF RANCH							
Peak Hour	Approach	Beeline Highway &	Pratt Whitney Road						
1 eak Hour	Арргоаст	Delay	LOS						
	NB	44.7	D						
	SB	SB 48.4 [
AM Peak Hour	EB	42.5	D						
	WB	43.2	D						
	Total	43.9	D						
	NB	48.1	D						
	SB	54.1	D						
PM Peak Hour	EB	42.0	D						
	WB	45.9	D						
	Total	44.8	D						

TABLE 3
QUEUE SPACING ADJUSTMENT
PALM BEACH PARK OF COMMERCE
SURF RANCH

AM Peak Hour

	N	Iorthbour	nd	S	outhbour	nd		Eastbour	nd	Westbound		
	LT	Thru	RT	LT	Thru	RT	LT	Thru	RT	LT	Thru	RT
Total Traffic w/o RTOR	14	2	0	105	133	321	43	251	5	188	576	164
Project Beach Ball Traffic				27		6	22					98
50% at 75' Queue				13		3	11					49
50% at 25' Queue				14		3	11					49
Surf Ranch and Non-Project Traffic	14	2	0	78	133	315	21	251	5	188	576	66
100% at 25' Queue	14	2	0	78	133	315	21	251	5	188	576	66
Total Traffic at 75' of queue spacing	0	0	0	13	0	3	11	0	0	0	0	49
Total Traffic at 25' of queue spacing	14	2	0	92	133	318	32	251	5	188	576	115
Average Queue Spacing (ft)	25	25	0	31	25	25	38	25	25	25	25	40

PM Peak Hour

	N	lorthbour	nd	S	outhbour	nd		Eastbour	nd	1	Westbour	nd
	LT	Thru	RT	LT	Thru	RT	LT	Thru	RT	LT	Thru	RT
Total Traffic w/o RTOR	2	131	148	155	6	45	299	546	6	6	282	130
Project Beach Ball Traffic				79		18	10					44
50% at 75' Queue				39		9	5					22
50% at 25' Queue				40		9	5					22
Surf Ranch and Non-Project Traffic	2	131	148	76	6	27	289	546	6	6	282	86
100% at 25' Queue	2	131	148	76	6	27	289	546	6	6	282	86
Total Traffic at 75' of queue spacing	0	0	0	39	0	9	5	0	0	0	0	22
Total Traffic at 25' of queue spacing	2	131	148	116	6	36	294	546	6	6	282	108
Average Queue Spacing (ft)	25	25	25	37	25	35	26	25	-	25	25	33

SITE CIRCULATION AND TURN LANE REQUIREMENTS

Figure 2 illustrates the future total driveway volumes generated by the project during the AM and PM peak hours.

According to the Palm Beach County "Guide to Parking Lot and Street Access Design Criteria and Standards," it is necessary to classify project entrances that provide access to the local roadway network as minor, intermediate, or major according to the following criteria:

- Minor Provides services for a maximum average daily traffic of 500 vehicles.
- Intermediate Provides services for a maximum average daily traffic from 501 to 2,000 vehicles.
- Major Provides service for a maximum average daily traffic greater than 2,000 vehicles.

Based on these criteria, the driveway is classified as minor.

The project driveway volumes were compared to the thresholds identified by the Palm Beach County Land Development Division to determine the turn lane requirements of the site's driveway. Section 300 of the Design Standards Manual identifies the threshold for installation of a right-turn lane as 75 or more inbound peak hour right-turning vehicles where street average daily traffic volumes exceed 10,000 vehicles per day and the threshold for a left-turn as 30 or more inbound peak hour left-turning vehicles.

Based on the data collected from the Palm Beach County Traffic Division, Pratt Whitney Road does not exceed 10,000 vehicles per day; therefore, the right-turn lane threshold does not apply to the project driveway. Futhermore, the DRI specifies development thresholds for implementing a right-turn lane, and the threshold has not yet been met. Turn lanes at the project driveway are required to be added when the net external two-way trips for the entire Park reach 2,570 trips. As of the 2016 Monitoring Study, the Park does not yet generate the requisite number of trips to warrant turn lanes at this location; however, to mitigate possible queuing during special events at Surf Ranch, a northbound right-turn lane and a westbound left-turn lane are proposed at the project driveway.

A northbound right-turn lane is proposed to prevent possible queuing during special events at Surf Ranch.

A westbound left-turn lane is not required for the outbound movement at the site's driveway based on the anticipated driveway volumes; however, a left-turn lane is proposed to enhance on-site operations.

The code requirements in Palm Beach County's *Unified Land Development Code* Article 4 Chapter B Section 1.124 limit special event use to three times per year, and as such, no additional special accommodations for Surf Ranch events are needed.

CONCLUSION

Based on the increase in trip generation (120 net new AM peak hour trips and 48 net new PM peak hour trips) associated with the proposed development, adequate capacity exists (as identified in the 2016 traffic monitoring study for the Florida Research Park. Significant land use vesting is available to include the proposed surf ranch.

Please contact me at (561) 840-0874 or adam.kerr@kimley-horn.com should you have any questions.

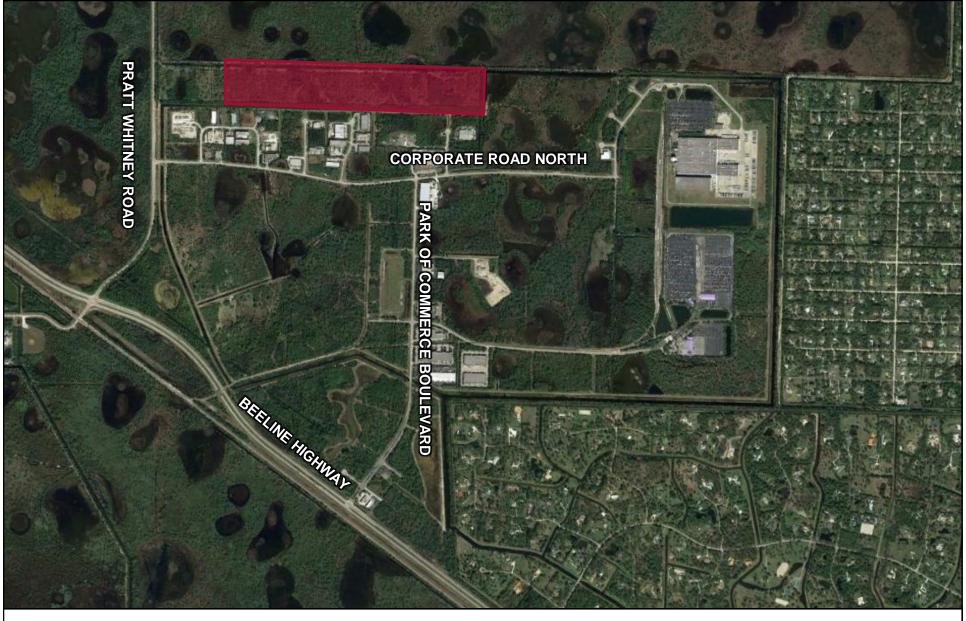
Sincerely

KIMLEY-HORN AND ASSOCIATES, INC.

*Adam B. Kerr, P.E.

Transportation Engineer

Zo APRE 2317


Number 64773

Certificate of Authorization

Number 696

Attachments

K:\WPB_TPTO\1403\140346000 - Palm Beach Park of Commerce\Surf Ranch\2017-04-17 Surf Ranch Concurrency 2.docx

LEGEND

PROJECT SITE

FIGURE 1

Kraemer, Addie

From: Kerr, Adam

Sent: Tuesday, January 17, 2017 9:22 AM

To: Kraemer, Addie Subject: FW: Surf ranch

-----Original Message-----

From: Brian K. Waxman [mailto:BWaxman@awproperty.com]

Sent: Wednesday, January 11, 2017 4:15 PM To: Kerr, Adam < Adam. Kerr@kimley-horn.com>

Cc: jbrinkman@udkstudios.com

Subject: RE: Surf ranch

A typical day's use may be 10 employees and 20 - 50 guests. 20 when the members are using and 50 when the surf schools are using.

We spoke to UDKS today about possibly adding industrial buildings on the west side of the site. I'll let Joni advise if she thinks that should be included in your traffic analysis now or later.

Thanks.

Brian K. Waxman, Managing Director 11780 US Highway One, Suite 305 © North Palm Beach, Florida 33408

Office: (561) 687-5800 2 Facsimile: (561) 689-1255 bwaxman@awproperty.com 2 awproperty.com

----Original Message-----

From: Adam.Kerr@kimley-horn.com [mailto:Adam.Kerr@kimley-horn.com]

Sent: Wednesday, January 11, 2017 8:09 AM

To: Brian K. Waxman

Cc: jbrinkman@udkstudios.com

Subject: RE: Surf ranch

Brian-

As we alluded to at the meeting the other day, we'll develop traffic projections based on projected visitors/employees, etc. for a typical day (non-event). Do you have any information that you could provide? Thanks!

Adam B. Kerr, P.E. (FL, AL)

Kimley-Horn | 1920 Wekiva Way, Suite 200, West Palm Beach, FL 33411

Direct: 561 840 0874 | Main: 561 845 0665 Connect with us: Twitter | LinkedIn | Facebook | YouTube

Proud to be one of FORTUNE magazine's 100 Best Companies to Work For

TRAFFIC SURVEY SPECIALISTS, INC.

85 SE 4TH AVENUE, UNIT 109

DELRAY BEACH, FLORIDA

PHONE (561)272-3255

NOT SIGNALIZED

WEST PALM BEACH, FLORIDA

COUNTED BY: RICH MENDEZ

BEELINE HIGHWAY & PRATT WHITNEY ROAD

ALL VEHICLES

Site Code : 00170045 Start Date: 03/08/17

File I.D. : BEE_PRAT

Page : 1

PR	ATT WI	HITNEY I	ROAD		BEELINE	HIGHWA	Y		INNOVAT		VE.		BEELINE		Y		
Fre	om Noi	rth			From Eas	≅t			From Son	uth			From Wes	st		ļ.	
T T!	Turn	Left	Th m	Picht	 UTurn	⊺ of+	Thru	Picht	UTurn	Teft	Thru	Piaht	 UTurn	Left	Thru	 Right	Tota
Date 03/08																	
07:00	0	13	16	74	1	22	122	13	0	o	0	0	0	9	77	1	34
07:15	0	18	30	64	0	34	137	9	0	2	1	0	0	5	81	0	38
07:30	0	20	29	68	0	49	158	15	0	2	1	0	0	3	65	2	41
07:45	0	16	30	91	0	55	128	13	0	6	0	0	0	5	44	1	38:
Hr Total	0	67	105	297	1	160	545	50	0	10	2	0	0	22	267	4	153
08:00	0	21	39	80	1	42	131	15	0	3	0	0	0	4	51	2	38
08:15	0	24	24	61	0	39	95	15	0	1	3	1	0	6	70	3	34:
08:30	0	14	18	41	0	36	104	14	0	2	1	1	0	1	71	2	30
08:45	0	14	15	38	0	23	104	11	0	2	1_	4	1	1	50	2	26
Hr Total	0	73	96	220	1	140	434	55	0	8	5	6	1	12	242	9	130
	* BRI	EAK * -								 	-				 -		
16:00	0	14	1	4	0	4	72	21	0	1	17	28	0	72	115	1	35
16:15	0	9	1	1	0	0	74	17	0	0	25	33	0	67	143	2	37:
16:30	0	22	1	10	0	0	74	19	0	0	26	29	0	73	132	1	38
16:45	0	12	2	9	0	4	58_	16	0	2	30	40	0	63	120	2	35
Hr Total	0	57	5	24	0	8	278	73	0	3	98	130	0	275	510	6	146
17:00	0	16	2	2	0	2	65	21	0	0	45	40	0	72	130	1	39
17:15	0	20	1	1	0	0	61	15	į 0	7	32	28	0	65	127	1	35
17:30	0	10	1	4	0	1	76	20	0	0	24	36	0	55	117	1	34
17:45	0	16	2	2	0	0	63	17	0_	1	20	30	0	36	110	0	29
Hr Total	0	62	6	9	0	3	265	73	0	8	121	134	0	228	484	3	139

TOTAL 0 259 212 550 2 311 1522 251 0 29 226 270 1 537 1503 22 | 5695

TRAFFIC SURVEY SPECIALISTS, INC. 85 SE 4TH AVENUE, UNIT 109

BEELINE HIGHWAY & PRATT WHITNEY ROAD WEST PALM BEACH, FLORIDA

PHONE (561)272-3255

DELRAY BEACH, FLORIDA

Page : 2

Site Code : 00170045

Start Date: 03/08/17

File I.D. : BEE_PRAT

NOT SIGNALIZED

COUNTED BY: RICH MENDEZ

ALL VEHICLES

								ALL V	EHICLES								
	TOM MO	HITNEY rth	ROAD		BEELINE From Eas		Y		INNOVAT		VE		BEELINE From Wes		Y		
		Left			 UTurn			Right	 UTurn	Left	Thru	Right	 UTurn	Left	Thru	 Right	Tota
Date 03/08 Peak Hour					ection for			07:00 t	0 09:00	n 03/0	 8/17				-		
eak start			20220	1110010	07:15		criou.		07:1		0, = .		07:1	5		ı	
olume/	0	75	128	303	1	180	554	52		13	2	0	0	17	241	5	
ercent	0%	15%	25%	60%	0%	23%	70%	7%	0%	87%	13%	0%	0%	6%	92%	2%	
k total	506				787				15				263				
ighest	08:00				07:30)			07:4				07:1			l	
olume	0	21	39	80		49	158	15			0	0		5	81	0 !	
i total HF	140 .90				222				6 .62				86 .76			1	
				ı		PRAT	T WH	ITNE	Y ROA	D			1			·	
		•		0	303	•	128	•	75	ļ :	17						
									1		2						
									ŀ		52						^
				0	303		128		75		 71				0	•	0
				٠	303	' 	120	<u> </u>	/5		<i>/</i> T				U		
						1 5	506	1	"								
					<u> </u>				577				г			. !	52
EELIN	E H	IGHW.	ΑY											Ţ	52		
1	.3						. лт	T 1777	HICLE	r							
55			870	-			· AL	ir AF	итспъ	D						. 5	 54
30			0,0										787	5	54	٠.	J4
													, , ,		-		
1	.7			٦									I —				
			17													. 18	31
					1	,133	3				1,10	3		18	31		
24	1				1							1	L				
24	Τ.		241	2,	63		Tnto	rese	tion	Tota	ר					,	7 5
			Z I I	۷.	ا د		THE		571	ioca.				31	16	2,	75 41
								Ξ,	J / I	! :				J .	LO	2-	0
	5]-													•
			5										BEI	ELINE	E HIC	SHWAY	
				٦	Γ.			-	329								
	_							,		1	5 -						
	0		0				101	1.	12	i ! !_	اء				0		
			U				181	•	13	•	2	•	0 .		0		
							128 5										
							. -										
				1			314		13		2		0		0		
							_ _			;	_		-		-		
				ı				1		!							
						INN	TAVO	ION	DRIVĖ				I				
										i	•		_				
										1 8 6 3							
										į							
										i							

TRAFFIC SURVEY SPECIALISTS, INC.

BEELINE HIGHWAY & PRATT WHITNEY ROAD
WEST PALM BEACH, FLORIDA
COUNTED BY: RICH MENDEZ

NOT SIGNALIZED

85 SE 4TH AVENUE, UNIT 109 DELRAY BEACH, FLORIDA PHONE (561)272-3255 **Site** Code : 00170045 **Start** Date: 03/08/17

File I.D. : BEE_PRAT
Page : 3

TCLES

ALL	VEHICLES	į

							ALL V.	EHICLES								
PRATT	WHITNE	Y ROAD		BEELINE	HIGHWA	Y.		INNOVAT	ON DRI	VE		BEELINE	HIGHWA	Y	1	
From	North			From Eas	t			From Sou	th			From We	st		.	
								1							.	
UTur			Right	UTurn	Left	Thru	Right	UTurn	Left	Thru	Right	UTurn	Left	Thru	Right	Tota
ite 03/08/17																
eak Hour Ana		y Entire	Interse			eriod:	16:00 to			8/17			_		,	
eak start 16 olume		9 6	20	16:15 0	6	0.77		16:1 \$ 0		100	140	16:1		*05	- 1	
	0 5 % 68				2%	271 77%	73 21%	1 1	2 1%	126 47%	142 53%		275 34%	525 65%	6 1%	
	7	ە / ق	45%	350	28	//16	218	270	1.2	4:/16	234	806	341	001	1.6	
	;; ;:30			16:30				270 17:0¢				16:1	<u>.</u>		1	
_	0 2:	2 1	10		0	74	19	'	0	45	40		67	143	2	
	3	_		93	•			85	ŭ			212	0,	410	- 1	
HF .6				.94				.79				.95			1	
			1		PRA]	T WH	IĮTNE	y roa	D			1				
								4174								
			0	22	١.	6		59		275						
			o l	22		C	' `			126						
							ļ			73						
															•	0
			0	22		6	;	59		474				0		-
					•	87		``								
							-	561				Γ	_		•	73
EELINE	HIGH	WAY						1					·	73		
2			_			. AT	.T. 77E'	HICLE	q							
271		295				AL.	V V 11.	шспп	3					-	• 27	7 1
22		200									1 :	350	2.	71		_
								į			'		_			
275			7					:				-				
		275						i			•				•	6
				1	,101	L				1,07	6			6		
				1								L				
525									_	_			····			
		525	80	06		Inte		tion !	Tota.	Ţ			_			59
			1				1,	513					72	26	52	
				İ											14	12
6		6	-									— 	דא די די	7 IIT	SHWAY	
		U	J				_	288			_	اخلاط	T 1/1	٠ ١١٢٠	211MAY T	
				J					27	o -	<u> </u>					
0							11 '	1				'		•		
		0				6	; ·	2	•	126	•	142 ·		0		
						6	5	1:								
						6	5									
							∷∥				:					
						18	3	2		126	-	142		0		
								1.7								
					TINTN	יי ענז∩נ	∥ 'TOM '	DRIVE								
					7 TAT.	VOVAI	TOIN .	OKT AB		ı						
								i								
								1								
								ļ								

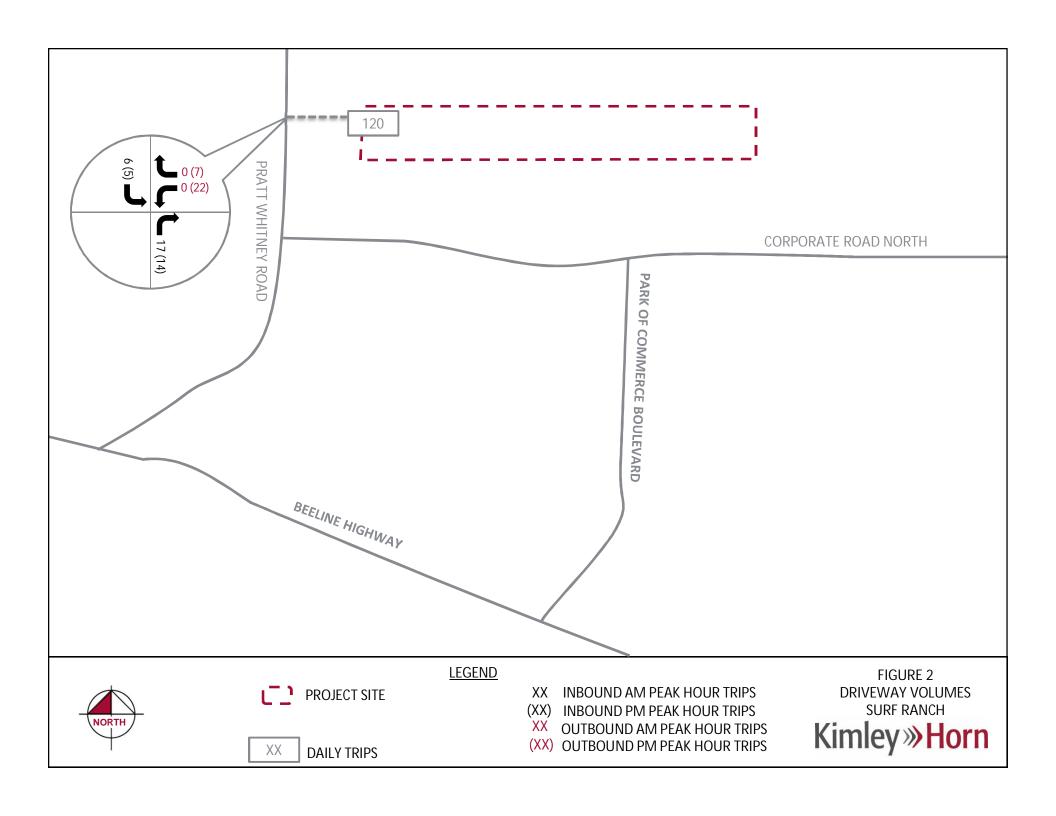
TRAFFIC SURVEY SPECIALISTS, INC.

BEELINE HIGHWAY & PRATT WHITNEY ROAD WEST PALM BEACH, FLORIDA COUNTED BY: RICH MENDEZ

NOT SIGNALIZED

85 SE 4TH AVENUE, UNIT 109

DELRAY BEACH, FLORIDA PHONE (561)272-3255


Site Code : 00170045 Start Date: 03/08/17

File I.D. : BEE_PRAT

Page : 1

PEDESTRIANS & BIKES

PR	W TTA	HITNEY	ROAD		BEELINE	HIGHWA	·Υ		INNOVAT	ION DRI	VE		BEELINE	HIGHWA	·Υ		
Fr	om No	rth			From Ea	st			From So	uth			From We	est		-	
					1				1				1				
	Left	BIKES	Right	Peds	Left	BIKES	Right	Peds	Left	BIKES	Right	Peds	Left	BIKES	Right	Peds	Tota
ate 03/08	/17 -								-	ļ							
	•	•	•	•										0		0 1	
7:00	0	0	0	0	•	0	0	0	0	0	0	0		0	0	0	
7:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7:45	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	
r Total	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	
	* 00	EVR * -								: :							
	- BK	BAK " -															
									 I 0	 					-		

CRITICAL SUM INTERSECTION ANALYSIS SHEET SURF RANCH PRATT WHITNEY ROAD & BEELINE HIGHWAY Existing Geometry

Growth Rate = 1.00%
Peak Season = 1 1
Buildout Year = 2021 2021
Years = 4 4

			<u>AM</u>	Peak H	<u>our</u>							
1	N	lorthboun	ıd	S	outhbour	nd		Eastbour	nd		Westbour	nd
	LT	Thru	RT*	LT	Thru	RT*	LT	Thru	RT	LT	Thru	RT
Existing Volume on 03/08/2017	13	2	0	75	128	303	17	241	5	181	554	52
Peak Season Volume	13	2	0	75	128	303	17	241	5	181	554	52
Traffic Volume Growth	1	0	0	3	5	12	1	10	0	7	22	2
Committed Development	0	0	0	0	0	0	0	0	0	0	0	0
1% Traffic Volume Growth	1	0	0	3	5	12	1	10	0	7	22	2
Committed + 1% Growth	1	0	0	3	5	12	1	10	0	7	22	2
Max (Committed + 1% or Historic Growth)	1	0	0	3	5	12	1	10	0	7	22	2
Background Traffic Volumes	14	2	0	78	133	315	18	251	5	188	576	54
Project Beach Ball Traffic				27		6	22					98
Project Traffic												
Inbound Traffic Assignment Inbound Traffic Volumes Outbound Traffic Assignment Outbound Traffic Volumes				50.0%		15.0% 0	15.0% 3					50.0% 12
Project Traffic							3					12
Total Traffic w/o RTOR	14	2	0	105	133	321	43	251	5	188	576	164
TOTAL TRAFFIC	14	2	0	105	133	321	43	251	5	188	576	164

PM Peak Hour

	N	lorthboun		S	outhbour	nd		Eastbour	ıd	Westbound		
	LT	Thru	RT*	LT	Thru	RT*	LT	Thru	RT	LT	Thru	RT
Existing Volume on 03/08/2017	2	126	142	59	6	22	275	525	6	6	271	73
Peak Season Volume	2	126	142	59	6	22	275	525	6	6	271	73
Traffic Volume Growth	0	5	6	2	0	1	11	21	0	0	11	3
Committed Development	0	0	0	0	0	0	0	0	0	0	0	0
1% Traffic Volume Growth	0	5	6	2	0	1	11	21	0	0	11	3
Committed + 1% Growth	0	5	6	2	0	1	11	21	0	0	11	3
Max (Committed + 1% or Historic Growth)	0	5	6	2	0	1	11	21	0	0	11	3
Background Traffic Volumes	2	131	148	61	6	23	286	546	6	6	282	76
Project Beach Ball Traffic												
,				79		18	10					44
Project Traffic												
Inbound Traffic Assignment							15.0%					50.0%
Inbound Traffic Volumes							3					10
Outbound Traffic Assignment				50.0%		15.0%						
Outbound Traffic Volumes				15		4						
Project Traffic				15		4	3					10
Total Traffic w/o RTOR	2	131	148	155	6	45	299	546	6	6	282	130
RTOR Reduction												
TOTAL TRAFFIC	2	131	148	155	6	45	299	546	6	6	282	130

^{*}Channelized right-turn movement; therefore, volumes in HCS+ have been reduced to 0 due to the free-flow movement.

CONTROLLER TIME SHEET

DATE TIMING INSTALLED:	
------------------------	--

INTERSECTION:	BEELINE HWY & PRATT WHITNEY RD (SOUTH ENTRANCE)	CONTROLLER TYPE	NAZTEC
SIGNAL #	7020	SYSTEM #	258

PHASE NUMBER	APPROACH	MIN GREEN	GAP EXT	MAX 1	MAX 2	YEL CLR	RED CLR	WALK	PED CLR	MIN RCL	MAX RCL	PED RCL	LOCK CALLS	NA1 RIW	DETECTOR SETTINGS
	INTERVAL								N. N. W.						
1	WALT	5.0	3.0	45.0		5,5	2.0			0			0		L1:NORMAL
2	EA	20.0	4.0	40.0		5.5	2.5			1			1		L2:NORMAL
3															
4	SA	6.0	4.0	40.0		5.5	2.0			0			0		L4:NORMAL
5	EALT	5.0	3.0	55.0		5.5	2.0			0			0		L5:NORMAL
6	WA	20.0	4.0	40.0		5,5	2.5			1			1		L6:NORMAL
7															
8	NA	6.0	4.0	40.0		5.5	2.0			0			0		L8:NORMAL

		PRE-EA	APTION TIMI	NG		SPECIAL FUNCTIONS								
	GREEN BEFORE	TRACK CLR	TRACK CLR YEL	MIN	YEL AFTER	RED AFTER			START Φ	DUAL ENTRY	DET SWITCH	OUT OF FLASH	INTO FLASH	
									2-6	2,4,6,8	1,5	2-6	4-8	
COMMENTS *UPDATED CLE	COMMENTS *UPDATED CLEARANCES									TIMING DESIGNED BY: K. LANE-PALMER				12/16/2016
	AF	PPROVED BY:	G. JEEDIGUI	NTA, P.E. P.T	.O.E. 🐠	DATE:	12/16/16							

Short Report Page 1 of 1

					S	HORT	REPC	RT									
General Info	ormation						Site Information										
Analyst Agency or C Date Perforr Time Period	med <i>04/19/2017</i>	ur					Intersection Beeline Hwy & Pratt Whitney Rd Area Type All other areas Jurisdiction PBC Analysis Year 2021										
Volume and	d Timing Input						•										
			EB				WB				IB			SB			
Number of L	202	LT 1	Th 2	╧	RT 0	LT 1	TH	RT 1	LT 1	1	Ή	RT 1	LT 1	TH	RT 1		
	.anes	1		_	0		2 T	R		7	-	R		1 T	R		
Lane Group	,,		- 			L 188	576	164	L 14	2		0	L 105	133	0		
Volume (vph % Heavy Ve		7	- 			7	7	7	7	7	_	7	7	7	7		
PHF	illicies	0.95				0.95		0.95	0.95	0.9		0.95	0.95		0.95		
Pretimed/Ac	tuated (P/A)	0.95 A	0.98	'	0.95 A	0.95 A	0.95 A	0.95 A	0.95 A	0.9 A		0.95 A	0.95 A	0.95 A	0.95 A		
	` ,			\dashv	А				-	_		-		-	_		
Startup Lost		2.0	2.0 4.0	-		2.0	2.0	2.0	2.0	2.		2.0	2.0	2.0	2.0		
	Effective Green	4.0		\dashv		2.0	4.0	4.0	2.0	2.		2.0	2.0	2.0	2.0		
Arrival Type		3	3	+		3	3	3	3	3		3	3	3	3		
Unit Extensi		3.0	3.0	' 		3.0	3.0	3.0	3.0	3.		3.0	3.0	3.0	3.0		
Ped/Bike/RT	OR Volume	0	0	$\frac{1}{2}$	0	0	0	60	0	(3	0	0	60		
Lane Width Parking/Grade/Parking		12.0	12.0		Λ.	12.0	12.0	12.0	12.0	12		12.0	12.0	12.0	12.0		
	N	0	\dashv	N	N	0	N	N	C	'	N	N	0	N			
Parking/Hour Bus Stops/Hour		0	0	╅		0	0	0	0	()	0	0	0	0		
-	edestrian Time	0	3.2	_		0	3.2		Ü	3.	_		0	3.2			
Phasing		VB Only			Perm		4	NS Pe	rm)6		07	<u> </u>	08		
Timing	G = 45.0 G	= 10.0		G =	40.0	G =		G = 40	0.0	G =		G =	=	G =	-		
, and the second	Y = 7.5 Y			Y =	8	Y =	Y = Y = 7.5			Y =		Y =					
	Analysis (hrs) = 0			-1-			Datari			Cycle	e Ler	ngth C =	= 158.0)			
Lane Gro	up Capacity, (Jontro		ега :В	y, and	T LUS	WB	ninatio	on T		NB		<u> </u>	SB			
A divists d. Fla	Data	45	269			100	-1	1400	15			0	111	1			
Adjusted Flo		45 548	+			198	606 899	109	15	45		382	111	140	0 382		
Lane Group	Сараспу		896			918	+	401	282			+	340	450	_		
v/c Ratio		0.08	0.3			0.22	0.67	0.27	0.05	_		0.00	0.33	0.31	0.00		
Green Ratio		0.54	0.2			0.70	0.27	0.27	0.25	_		0.25	0.25	0.25	0.25		
Uniform Dela	- 1	18.8	46.			8.5	51.9	45.9	44.7			44.1	48.0	47.8	44.1		
Delay Facto		0.11	0.1			0.11	0.25	0.11	0.11	0.1		0.11	0.11	0.11	0.11		
Incremental	Delay d ₂	0.1 1.000	0.2			0.1	2.0	0.4	0.1	_	.0	0.0	0.6	0.4	0.0		
PF Factor	PF Factor		1.0			1.000	1.000	1.000	1.000	-	000	1.000	1.000	1.000	1.000		
Control Dela			8.6	53.9	46.3	44.7	-	1.1	44.1	<i>4</i> 8.6	48.2	44.1					
Lane Group	ane Group LOS B D		Α	D	D	D	L)	D	D	D	D					
Approach De	Approach Delay 42.5						43.2		44.7				48.4				
Approach LO	Approach LOS D				D D)	D							
Intersection	ntersection Delay 43.9				Intersection LOS D					D							
Copyright © 2008	opyright © 2008 University of Florida, All Rights Reserved						HCS+ TM Version 5.4 Generated: 4/1						4/19/2017	. 6.08 PM			

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/19/2017 6:08 PM

BACK-OF-QUEUE WORKSHEET												
General Information												
Project Description AM	Peak H	our Exis	sting T	Timing								
Average Back of Qu	eue											
	EB WB NB SB										SB	RT
Lane Group	L	TR	KI	L	T	R	L	T	R	L	T	R
Initial Queue/Lane	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flow Rate/Lane Group	45	269		198	606	109	15	2	0	111	140	0
Satflow/Lane	1018	1771		1313	1775	1509	1113	1776	1509	1343	1776	1509
Capacity/Lane Group	548	896		918	899	401	282	4 50	382	340	4 50	382
Flow Ratio	0.0	0.1		0.2	0.2	0.1	0.0	0.0	0.0	0.1	0.1	0.0
v/c Ratio	0.08	0.30		0.22	0.67	0.27	0.05	0.00	0.00	0.33	0.31	0.00
I Factor	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Arrival Type	3	3		3	3	3	3	3	3	3	3	3
Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PF Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Q1	0.9	4.9		2.9	12.5	3.8	0.5	0.1	0.0	4.0	5.0	0.0
kв	0.7	0.6		0.9	0.6	0.6	0.5	0.6	0.5	0.5	0.6	0.5
Q2	0.1	0.3		0.2	1.2	0.2	0.0	0.0	0.0	0.2	0.3	0.0
Q Average	1.0	5.2		3.1	13.7	4.0	0.5	0.1	0.0	4.2	5.2	0.0
Percentile Back of C	ueue	(95th	perc	entile)		•			•	•	
fB%	2.1	1.9		2.0	1.8	2.0	2.1	2.1	2.1	2.0	1.9	2.1
Back of Queue	2.1	10.1		6.2	24.4	7.9	1.1	0.1	0.0	8.3	10.2	0.0
Queue Storage Ratio	0											
Queue Spacing	38.0	25.0		25.0	25.0	40.0	25.0	25.0	0.0	31.0	25.0	25.0
Queue Storage	700	0		1375	0	0	0	0	0	320	0	0
Average Queue Storage Ratio	0.1			0.1						0.4		
95% Queue Storage Ratio	0.1			0.1						0.8		

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/19/2017 6:08 PM

Short Report Page 1 of 1

				S	HORT	REPC	RT								
General Info	ormation					Site Information									
Analyst Agency or C Date Perforn Time Period	med <i>04/19/2017</i>	ur Existi	ing			Intersection Beeline Hwy & Pratt Whitney Rd Area Type All other areas Jurisdiction PBC Analysis Year 2021									
Volume and	d Timing Input					•									
			EB			WB	1		NB			SB			
Number of L		LT	TH	RT 0	LT	TH	RT 1	LT 1	TH 1	RT 1	LT 1	TH 1	RT 1		
Number of L	.anes	1	2 TD	10	1	2 T	R		' T	R		T	R		
Lane Group Volume (vph	,,	299	 		6	282	130	2	131	0	L 155	6	0		
% Heavy Ve	·	7	546 7	6 7	7	7	7	7	7	7	7	7	7		
PHF	illicies	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95		
Pretimed/Ac	tuated (P/A)	0.90 A	0.93 A	A	0.93 A	0.95 A	0.90 A	0.93 A	A	0.95 A	0.95 A	0.93 A	A		
Startup Lost	` '	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
<u> </u>	Effective Green	4.0	4.0	+	2.0	4.0	4.0	2.0	2.0	2.0	2.0	2.0	2.0		
Arrival Type	Lilouivo Groon	3	3		3	3	3	3	3	3	3	3	3		
Unit Extension	on	- 				3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Ped/Bike/RTOR Volume			0	0	3.0 0	0	60	0	0	60	0	0	0		
Lane Width	12.0	12.0	<u> </u>	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0			
Parking/Grade/Parking		N	0	N	Ν	0	N	N	0	N	Ν	0	N		
Parking/Hour															
Bus Stops/H	lour	0	0		0	0	0	0	0	0	0	0	0		
Minimum Pe	edestrian Time		3.2			3.2			3.2			3.2			
Phasing		VB Only		W Perm)4	NS Pe		06	G =	07		08		
Timing		= 10.0 = 0		6 = 40.0 $7 = 8$	G = Y =		G = 40 $Y = 7.3$					G = Y =			
Duration of A	Analysis (hrs) = 0		<u> </u>			Cycle Lengt									
h	up Capacity, (ol De	lay, and	LOS	Deterr	ninatio	on							
			EE			WB			NB			SB			
Adjusted Flo	ow Rate	315	581		6	297	74	2	138	0	163	6	0		
Lane Group	Capacity	675	897		785	899	401	339	450	382	283	450	382		
v/c Ratio		0.47	0.65	;	0.01	0.33	0.18	0.01	0.31	0.00	0.58	0.01	0.00		
Green Ratio		0.54	0.27	·	0.70	0.27	0.27	0.25	0.25	0.25	0.25	0.25	0.25		
Uniform Dela	ay d ₁	21.0	51.4	!	9.0	46.7	44.8	44.1	47.8	44.1	51.6	44.2	44.1		
Delay Factor	r k	0.11	0.23		0.11	0.11	0.11	0.11	0.11	0.11	0.17	0.11	0.11		
Incremental	Delay d ₂	0.5	1.6	;	0.0	0.2	0.2	0.0	0.4	0.0	2.9	0.0	0.0		
PF Factor		1.000	1.00	0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
Control Delay 21.5		21.5	53.1	1	9.0	46.9	45.0	44.1	48.2	44.1	54.5	44.2	44.1		
Lane Group	ane Group LOS C D		Α	D	D	D	D	D	D	D	D				
Approach De	Approach Delay 42.0				45.9			48.1		54.1					
Approach LO	Approach LOS D					D			D		D				
Intersection	ntersection Delay 44.8				Intersection LOS D					D					
	opyright © 2008 University of Florida, All Rights Reserved												erated: 4/19/2017 6:10 PM		

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/19/2017 6:10 PM

	BACK-OF-QUEUE WORKSHEET												
General Information													
Project Description PM	Peak H	our Exis	sting 7	iming									
Average Back of Qu	eue												
	L	EB			WB			NB			SB		
Lane Group	LT L	TH TR	RT	LT L	TH T	RT R	LT L	TH T	RT R	LT L	TH T	RT R	
Initial Queue/Lane	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	315	581		6	297	74	2	138	0.0	163	6	0.0	
Satflow/Lane	1255	1773		1124	1775	1509	1339	1776	1509	1119	1776	1509	
Capacity/Lane Group	675	897		785	899	401	339	450	382	283	450	382	
Flow Ratio	0.3	0.2		0.0	0.1	0.0	0.0	0.1	0.0	0.1	0.0	0.0	
v/c Ratio	0.47	0.65		0.01	0.33	0.18	0.01	0.31	0.00	0.58	0.01	0.00	
I Factor	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Arrival Type	3	3		3	3	3	3	3	3	3	3	3	
Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PF Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Q1	7.3	11.9		0.1	5.5	2.5	0.1	4.9	0.0	6.3	0.2	0.0	
kв	0.8	0.6		0.8	0.6	0.6	0.5	0.6	0.5	0.5	0.6	0.5	
Q2	0.7	1.1		0.0	0.3	0.1	0.0	0.3	0.0	0.6	0.0	0.0	
Q Average	7.9	12.9		0.1	5.8	2.6	0.1	5.2	0.0	6.8	0.2	0.0	
Percentile Back of G	ueue	(95th	perc	entile)				-		-		
fB%	1.9	1.8		2.1	1.9	2.0	2.1	2.0	2.1	1.9	2.1	2.1	
Back of Queue	15.0	23.2		0.2	11.2	5.3	0.1	10.1	0.0	13.1	0.4	0.0	
Queue Storage Ratio	0	•	•				*	•	•		•		
Queue Spacing	26.0	25.0		25.0	25.0	33.0	25.0	25.0	25.0	37.0	25.0	35.0	
Queue Storage	700	0		1375	0	0	0	0	0	320	0	0	
Average Queue Storage Ratio	0.3			0.0						0.8			
95% Queue Storage	0.6			0.0						1.5			

Copyright © 2008 University of Florida, All Rights Reserved

Ratio

HCS+TM Version 5.4

Generated: 4/19/2017 6:10 PM