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There is a 400,000 to 800,000 position deficit each year
in our industry.

The US Needs More Engineers. What's
the Solution?

https://www.bcg.com/publications/2023/addressing-the-engineering-talent-shortage
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There are multiple ways to leverage Al in our industry.
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LLMs progress has reached a performance plateau.
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Technical Al will transform the industry;
there is room for unprecedented growth.
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CDM Smith is leveraging Al to drive data to decisions.
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CDM Smith is leveraging Al to drive data to decisions.

Monitoring

Marsh Restoration Mangrove and Seagrass

Monitoring




B
Al models are used to make predictions based on input data.
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Modern-day computer processing power has opened the door to widespread
use of Al.

2025




Modern-day computer processing power has opened the door to widespread
use of Al.
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Machine learning models are used to predict values or variables of interest based on
input data.

Model Variables

Target Variable
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Machine learning models are used to predict values or variables of interest based on
input data.

Model Variables

Target Variable
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Machine learning models require training data and validation data.

Training Data

Validation Data
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Training data is then used to train the machine learning model.
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Model predictions are then compared to data of known values to
determine model accuracy.

DATA MACHINE MODEL
INPUTS LEARNING MODEL PREDICTIONS
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Model predictions are then compared to data of known values to
determine model accuracy.
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Lets start our adventure!

Monitoring
Marsh Restoration
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CDM Smith monitored a nature-based solution project at the mouth of the
Savannah River.




CDM Smith monitored a nature-based solution project at the mouth of the
Savannah River.
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Structure from Motion (SfM) can be
used to generate 3D models from
2D images. i R 0
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Drone data revealed that the contractor graded too high.

Areas out of spec for target grading

80 Fee

Target Marsh Elevations:
North Area: 2.98 +/- 0.25 ft NAVD
South Area: 2.96 +/- 0.25 ft NAVD

Legend

Ground Surface Elevation
[ 240-2.75 (Below Target)
[ 275-3.25 (In Target)

Note:|Elevations derived;from|UAV:collected aerial imagery,via structure, from motion? - 3.25-575 (Above Target)
~ Y g ———— - - 3
g Only elevations for areas withjless than 0.5 fractionalvegetative coverageishown®
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Multispectral data provides information vegatative cover and health.
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High resolution pixels identify individual Spartina plugs.
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CDM Smith combined field data, 3D drone data, and multispectral data
in a machine learning model to quantify biomass.
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L
The machine learning model can output site wide biomass.
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Machine learning model results allow for easy identification
of biomass loss and gain over time.

Change from 2021 to 2022
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Biomass Loss

Biomass Stable
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CDM Smith used drone data and machine learning used to monitor

multiple ecosystems in Vero Beach, Florida.
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Australian Pine (invasive)
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CDM Smith used 10-band multispectral sensors to map the site.

Drone-derived Aerial 10-band Dual Camera




Multispectral drones can monitor 100s of acres of
seagrass at high resolution.




CDM Smith developed learning models to map seagrass/SAV versus sandy substrate.
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Red mangroves have a different spectral signature than Australian pine
which allows for machine learning-based mapping and monitoring.
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CDM Smith developed a machine learning model with over 95%
accuracy to identify the invasive species Australian pine.

Australian Pine




Drones and machine learning can fill the gap between
field transects and plane-based mapping.
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CDM Smith used machine learning to map exotic and native
species and help Hillsborough County evaluate fire risk.

36



The wildland urban interface presents land management challenges.

100-acre Little Manatee River Site
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Advanced remote sensing and Al provides better data to decisions makers.

.- Exotic Species

Biodiversity

Vegetative Cover

100-acre Little Manatee River Site

Vegetative Health
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CDM Smith developed patent-pending data collection methods to
increase efficiency and improve model accuracy.
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CDM Smith created high-resolution 10-band orthophotographs.

False Color Composite Aerial with Near-infrared
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Machine learning can use spectral patterns to identify species.
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CDM Smith developed a high accuracy map of native and
exotic species using machine learning.

Pixel size = 3 inches
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Machine learning model results can be used to pinpoint locations of
exotic and native fire species.

Exotic/Fire Species g pmm o

B Native/Fire Species
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Subject matter experts play a vital role in Al model development
and accurate interpretation of predictions.
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Subject matter experts play a vital role in Al model development
and accurate interpretation of predictions.

Wetlands

Exotic Species
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Sky Wave at CDM Smith leverages advanced remote sensing,
automation, and Al to develop environmental solutions.
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The Age of De-Skilling

Will Al stretch our minds—or stunt them?

By Kwame Anthony Appiah
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Scan for more information

JUSKY wave’: @



Case Study: Remedial Excavation and Capping Jacksonville, FL
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CDM Smith used automation and machine learning to monitor excavation
and verify cap placement at a remediation site.

= QObjectives m Sjze
- Track contractor performance _ 50 acres
- Earth volume measurement

- Compliance

= | ocation

— Ribault River,
Jacksonville, FL
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Phase | of the remediation included excavation of 2 feet and capping
with clean fill.

Remedial Action Plan Phase | of Remediation
2 | o

Approximate
Excavalion and
Fill Depths

o1



High resolution cameras are used to collect digital imagery of the
site monthly.
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ions.

High resolution aerial imagery documents site cond
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Imagery can be used to assess contractor performance.




A 3D model is created for the site from each monthly drone flight.

Drone-derived 3D Model




CDM Smith uses automation to track topographic changes over time.
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The drone data is used to guide field efforts and verification sampling.

> 0.25ft decrease
0 -0.249- 0.250
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Drone datacanb

e used to assess BMPs.
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Drone data can be used to assess BMPs.

9 8 ft NAVD

0 ft NAVD
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After capping wetland trees were planted in a portion of the site
to comply with state and federal permit requirements.




After capping wetland trees were planted in a portion of the site
to comply with state and federal permit requirements.

Phasel = 470 trees




Ground truthing data was collected for use in a machine learning model.

Digital Machine

'—c-ﬁ— Data Learning Model
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Multispectral sensor collects near-infrared and provides data on vegetation.

10-band
Multispectral
Drone Data
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Reflectance (%)

The spectral signatures are often different between species.
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I
CDM Smith used a machine learning model to identify tree species in the
restion area.

MACHINE
LEARNING MODEL MODEL

PREDICTIONS

Red Maple




Digital data, automation, and machine learning provide
multiple project benefits.

Contractor Performance

Site Documentation

Permit Compliance

Restoration Monitoring




Case Study: Solar Site Feasibility and Wetland Mapping
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CDM Smith used deep learning to evaluate the extent of uplands
and wetlands in support of solar site feasibility.

m Sjze
- 4 sites

- Total of 7,000 acres

= Sensors
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Wetlands and other Waters of the US regulations are
in constant flux.

SCOTUS
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L
Field work crucial, but limiting, time-consuming, and hazardous.

A



Remote sensing data provides information that can be used
to predict wetland presence with Al models.
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There are multiple advantages of using lidar data.

Extra data

Details on Vegetation

Site Access Not Required
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CDM Smith developed a machine learning model to map
streams and wetlands.

Wetland Predictions

Wetland Probability

PN High

B Low ’s Jacksonville
0 5 10 20 Miles
L i L 1 ! 1 A 1 J "

FOLP, foy HERE Gormn, SafeGraph, 14O, METUTNASA, USGS, LR, NPS
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CDM Smith’s deep learning model increased accuracy and

ability to transfer the model to new sites.

Machine Learning Model

Deep Learning Model

Wetland Probability
PN High

M Low
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CDM Smith’s deep learning model increased accuracy and
ability to transfer the model to new sites.

Deep Learning Model

Wetland Probability
PN High

M Low
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L
The model results drastically reduce field time for delineations

and provide high accuracy results for planning projects.

Deep Learning Model




Case Study: MoDOT I-70 Expansion Corridor Project
Wetland and Stream Delineation

|
13 miles
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Wetlands and other Waters of the US regulations are
in constant flux.

SCOTUS
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L
Field work crucial, but limiting, time-consuming, and hazardous.
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Remote sensing data provides information that can be used
to predict wetland presence with Al models.
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There are multiple advantages of using lidar data.

Extra data

Details on Vegetation

Site Access Not Required
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—
Remote sensing data provides information that can be used

to predict wetland presence with Al models.

Wetland and Stream Predictions

‘ _"Nati@ﬁal’f\g’ri’t’:_ult’ure imagery Program
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L
The model results drastically reduce field time for delineations

and provide high accuracy results for planning projects.

Deep Learning Model Results
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