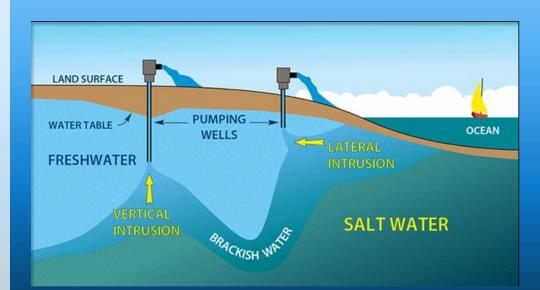
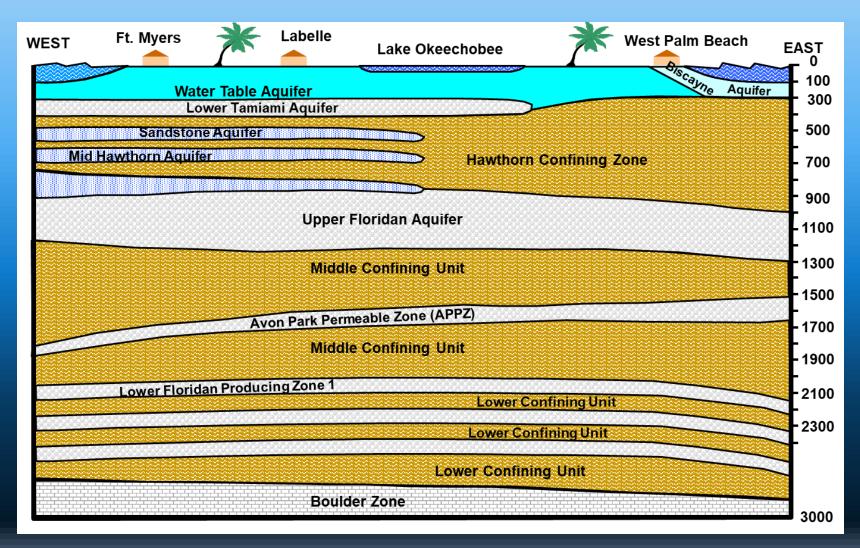
SFWMD Saltwater Intrusion Mapping And Modeling – An Update

Palm Beach County Water Resources Task Force Meeting August 17, 2023

Pete Kwiatkowski, PG Section Administrator, Resource Evaluation Water Supply Bureau, Water Resources Division


Presentation Overview

- > Overview of Saltwater Intrusion, Aquifers, Wellfields
- Saltwater Intrusion Monitoring and Mapping Program
- Groundwater Modeling
- Schedule
- Questions and Discussion


Common Sources of Saltwater Intrusion

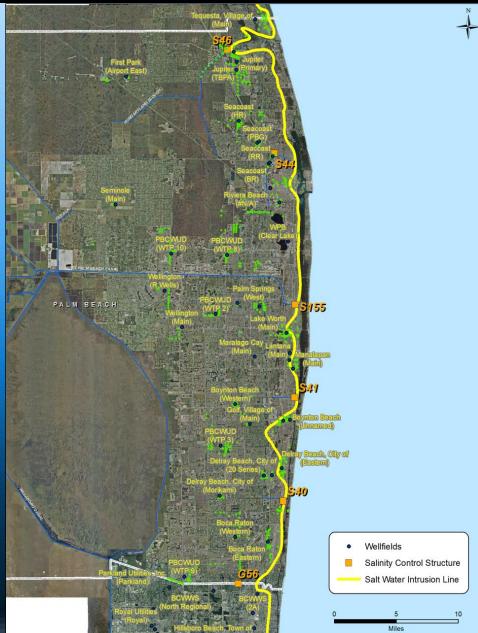
- Lateral intrusion from the coast
- Vertical Intrusion (upconing from saltwater below)
- Surface Infiltration estuaries, boat basins, saltwater marshes, saltwater canals, etc.
- Ancient (relict) seawater trapped in low permeability aquifers

Generalized Hydrogeology of South Florida

Why is this Important?

- Wellfields are a major water supply source protect investment
- Once saltwater enters wells, very difficult if not impossible – to reverse
- Very expensive to relocate wellfields and associated infrastructure (pipelines, treatment plants and processes, etc.)
- Other sources of water more expensive to treat (e.g., Floridan aquifer – reverse osmosis)

Public Supply Wellfields, Broward County

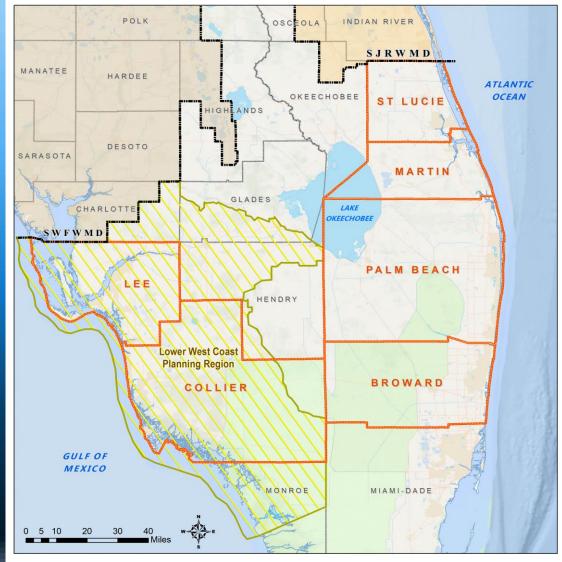

What factors affect the position of the saltwater interface?

- Surface Water Control Structures
 - Maintain canal stages to prevent inland saltwater movement
 - Help maintain groundwater levels to minimize inland movement of saltwater into aquifer

Public Supply Wellfields

- Well Locations
- ▶ Well Depths
- ► Pumping Rates
- Proximity to Saltwater
- Proximity to Canals (Recharge)

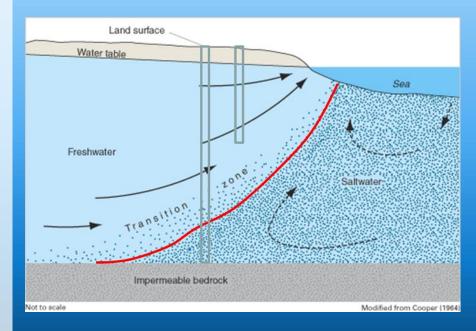
Sea-Level Rise and Climate Change


SFWMD Saltwater Interface Mapping Project

- Strategy -- Compare interface positions (i.e., 2009, 2014, 2019), note areas of concern, and adjust monitoring as necessary
- Update Maps Every 5 Years
- Use all available data (USGS, SFWMD, Counties, Water Use Permittees)
- Furthest Inland Extent Dry Season
- Maximum chloride value March/April/May (with some exceptions)
- >250 milligrams per liter (mg/L) chlorides Primary drinking water standard
- Coastal aquifers: Water Table (Biscayne aquifer), Lower Tamiami, Sandstone, Mid-Hawthorn

Location of SFWMD Coastal Counties

<u>COUNTY</u>	<u>Aquifer</u>	<u>2009</u>	<u>2014</u>	<u>2019</u>						
Martin & St. Lucie	SAS	Х	X	Х						
Palm Beach	SAS	Х	X	Х						
Broward	SAS	Х	Х	X						
Lee	WTA	Х	Х	X						
Lee	MHA	Х	Х	-						
Lee & Collier	SSA	Х	Х	X						
Lee & Collier	LTA	Х	Х	X						
Collier	WTA	Х	Х	X						
Collier	MHA	Х	Х	-						
Lee & Collier	MHA			X						
<u>Notes:</u>										
Miami-Dade County mapping performed by USGS										
SAS	Surficial Aquifer System									
WTA	Water Table Aquifer									
МНА	Mid-Hav									
SSA	Sandstone Aquifer									
LTA	Lower Tamiami Aquifer									



Presenter: Pete Kwiatkowski, P.G. 8

Mapping Challenges

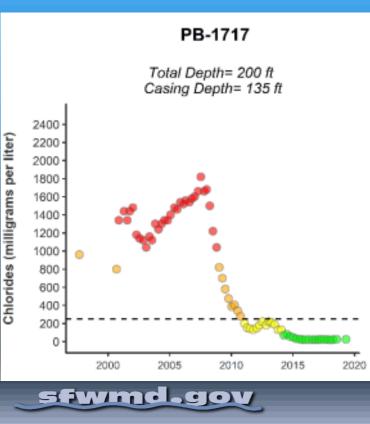
- Representing a 3-D feature on a 2-D map
- Representing a dynamic interface with fixed-time snapshots
- > Representing a diffuse front with a single line
- Mapping from data that may represent one of several saltwater intrusion pathways
- Some wells used in 2009 and 2014 were not available in 2019 (abandoned, destroyed, no longer monitored, etc.)
- New wells added to 2019 may alter interpretation of isochlor line.
- Use existing monitor wells with varying well depths, construction, and spacing

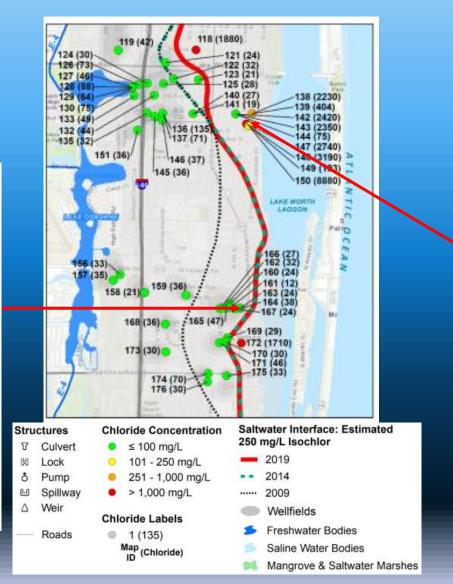
sfwmd.gov

2019 Map, Palm Beach County

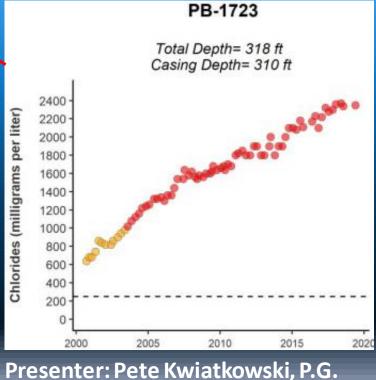
• In general, interface close to the coast

 Older wellfields close to the coast are more vulnerable to saltwater intrusion and are areas of concern

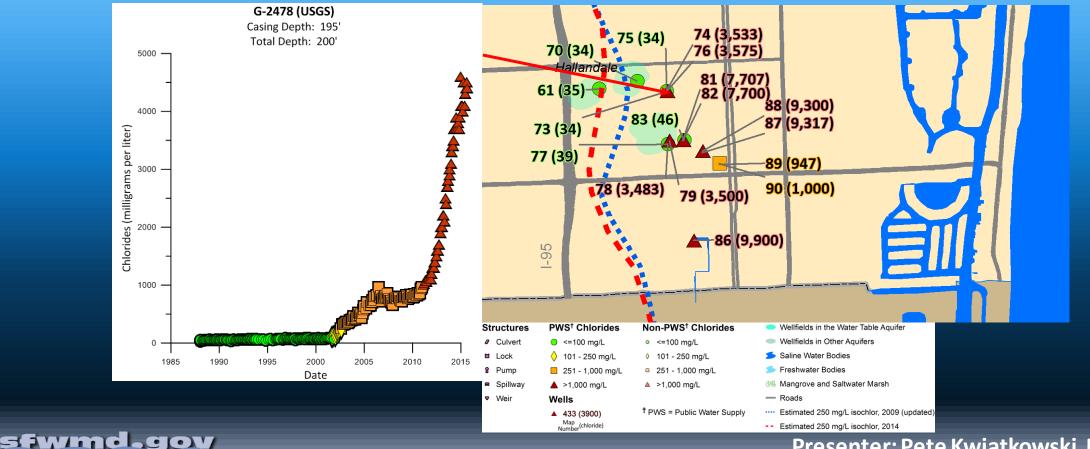

- Lake Worth Drainage District maintains surface water control elevations in southern half of County that help maintain groundwater elevations to fend off saltwater intrusion
- Western wellfields (e.g., PBCWUD) at much less risk of saltwater intrusion
- Floridan aquifer wellfields (e.g., Jupiter, LWB, etc.) reduce water demands on coastal wellfields
 StymeLgoy

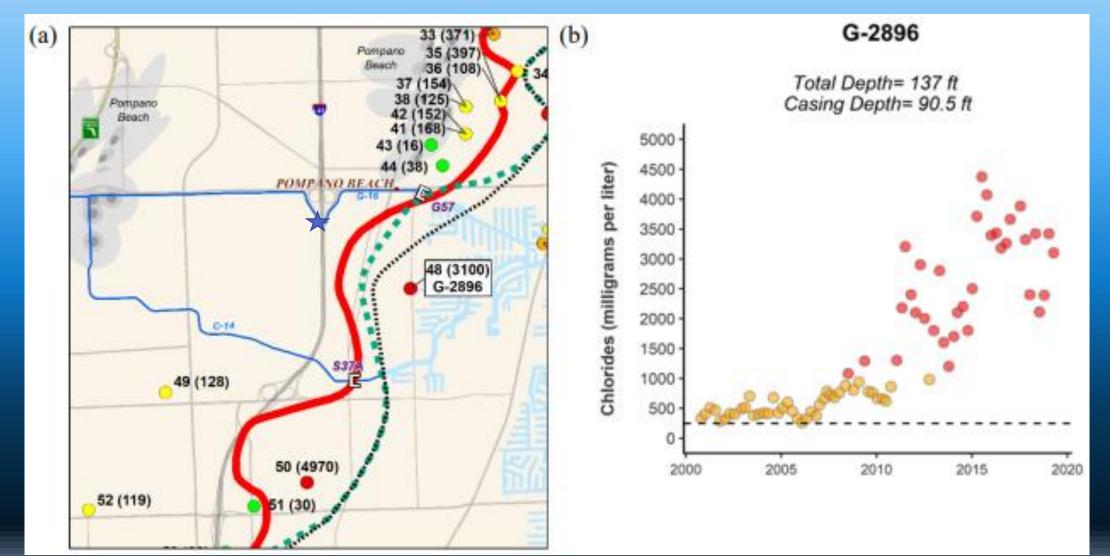


Lantana/Lake Worth Beach Area


Interface retreated

Reduced coastal pumping

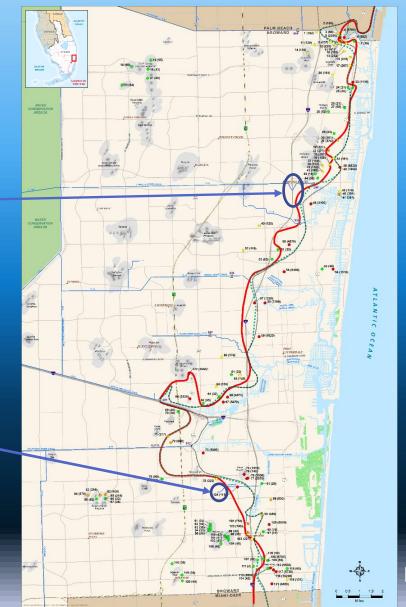

Chlorides increased and leveling off?


Hallandale Beach Area

• G-2478 (Map # 76, Cl = 3,575 mg/L) -- Saltwater toe (195 to 200 feet depth) continued to advance inland

• G-2477 (Map # 75, Cl = 34 mg/L) -- Freshwater (75 to 80 feet depth) -- Upconing potential

Pompano Beach Area


sfwmd.gov

Two New Monitor Wells to Fill Data Gaps

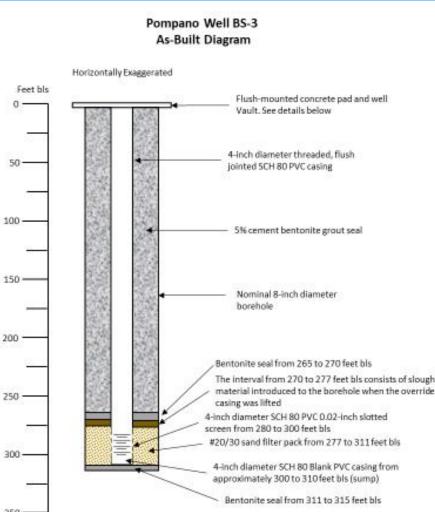
Pompano Beach

C-10 Canal Spur

Presenter: Pete Kwiatkowski, P.G. 14

New SFWMD Saltwater Intrusion Monitor Well BS-2, Hollywood

SOUTH FLORIDA WATER MANAGEMENT DISTRICT New SFWMD Saltwater Intrusion Monitor Well BS-3, **Pompano Beach**



sfwmd.gov

BS-3 Wellhead

- Open-hole interval: 280 to 300 feet below land surface
- Sample Date: April 12, 2023
- Chlorides = 24 mg/L
- TDS = 311 mg/L
- Specific Conductance = 526 umhos/cm

50

300-

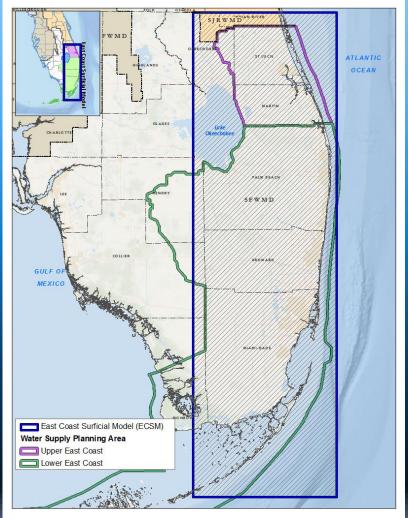
BS-3 Well Construction Diagram

16

What Can We Do?

- Water conservation
- Reduce pumpage in coastal wellfields
- Prioritize withdrawals from western wellfields, provided they do not cause adverse effects on natural systems
- Increase groundwater recharge (canals, reclaimed water, etc.) to maintain and improve freshwater heads to counteract saltwater
- Use alternative water supplies (e.g., Floridan aquifer, reuse for irrigation, surface water storage, etc.) to reduce reliance on coastal wellfields
- Maintain, enhance and conduct monitoring of the saltwater intrusion monitoring network
- Conduct density-dependent groundwater modeling to simulate future saltwater intrusion as a result of future pumping, sea-level rise, and climate change
 SFWIDLGOV

 Presenter: Pete Kwiatkowski, P.G.


17

SEAWAT-2022

- SEAWAT-2000 is a coupled version of MODFLOW-2000 and MT3DMS [as published by the USGS] designed to simulate threedimensional, variable-density groundwater flow and multi-species transport.
- SEAWAT-2022 is SFWMD's modified version of this code to accommodate the unique hydrologic features of South Florida
- Selected the SEAWAT-2022 computer code as the basis for development of SFWMD's East Coast Surficial Model (ECSM), a regional, density-dependent groundwater model -- currently being developed and peer-reviewed -- covering the Lower and Upper East Coast Planning Regions.

Objectives of Groundwater Modeling East Coast Surficial Model (ECSM)

Fwmd.d

Evaluate if the water supply demands within the East Coast water supply planning regions can be met within a 20-year planning horizon without undue effects on existing legal users of water and natural systems

Simulate and evaluate the effects of sea-level rise and climate change on the aquifer system as part of SFWMD's Water Supply Vulnerability Assessment

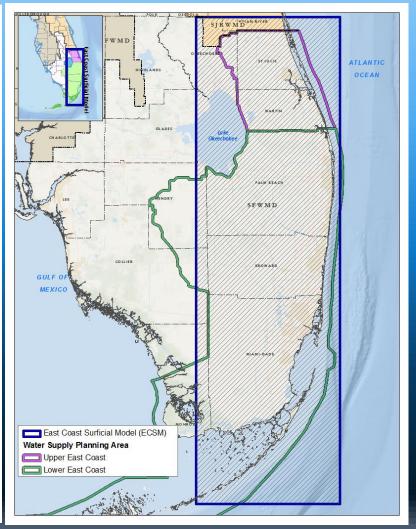
East Coast Surficial Model (cont'd)

SEAWAT model with code changes to accommodate SFWMD specialized packages

Calibration Period of Record: 1985 – 2012

Verification period of record: 2013 – 2016

Daily stress period

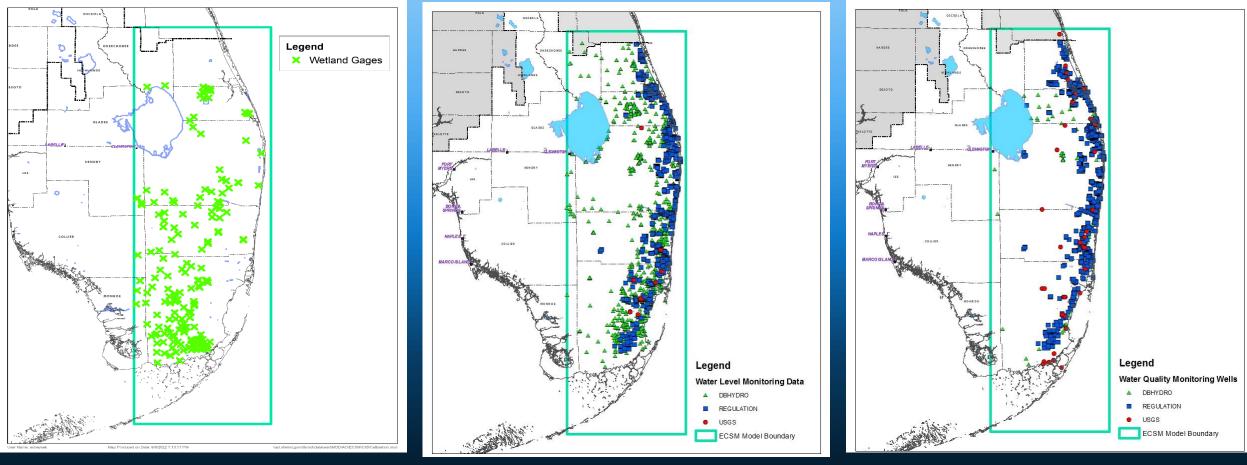

>Cell size: 1,000 ft x 1,000 ft

≻5 model layers

sfwmd.gov

Calibrated to water levels and water quality (TDS) mg/L

➢ Boundaries



ECSM Layers

Age	Model Layer	Q Layer		Stratigraphy	Lithology		Hydrostratigraphy	
Holocene			Lake Flirt Marl, Undifferentiated Soil and Sand		Marl, peat, organic soil, and quartz sand		Water Table Aquifer	
Pleistocene	Layer 1	Q4, Q5	Pamlico Sand		Quartz sand			
			Miami Limestone		Oolitic limestone and fossiliferous limestone			
			Fort Thompson Formation		Marine limestone, gastropod-rich freshwater limestone, sandy limestone, and fossiliferous quartz sandstone	E		
	Layer 2	Q2, Q3	Key Largo Limestone		Coralline limestone and minor amounts of sandy limestone	fer System	Semiconfining Unit	
	Layer 3	Q1	Anastasia Formation		Coquina, shell, quartz sand, and sandy limestone	al Aquifer :		
			Caloosahatchee Formation		Sandy to shelly marl, clay, silt, and quartz sand	Surficial		
Pliocene	Layer 4	Formation		Pinecrest Sand Member	Quartz sand, bivalve-rich quartz sandstone and sandy limestone, shell, mudstone, and minor amounts of phosphate grains		<u>}</u>	
	Layer 5	Tamiami For	Ochopee Limestone Member	Bivalve-rich limestone, bivalve-rich quartz sand and sandstone, and moldic quartz sandstone		Grey Limestone Aquifer		

Monitoring Locations for Model Calibration

Wetland Gages (Water Levels) Groundwater Wells and Surface Water Stations (Water Levels) Groundwater Monitoring Wells (Water Quality) Presenter: Pete Kwiatkowski, P.G. 22

Schedule

- 2023 ECSM Calibration (Draft) and Peer Review
- 2024 Complete ECSM Calibration, Peer Review, and Conduct Model Application for LEC Plan
- 2024 Dry Season Conduct chloride sampling and compile water quality data from monitor wells in network
- Fall 2024 Publish 2024 Saltwater Interface Maps, SFWMD Coastal Aquifers
- 2024/2025 Model Application for Water Supply Vulnerability Assessment

Questions and Discussion

2009, 2014 & 2019 maps available: <u>https://www.sfwmd.gov/documents-by-tag/saltwaterinterface</u>

Merged Isochlor 2019: <u>https://geo-sfwmd.hub.arcgis.com/datasets/merged-isochlor-2019</u>

Chloride Data, 2019: https://geo-sfwmd.hub.arcgis.com/datasets/chloride-data-2019

pkwiat@sfwmd.gov 561-682-2547

