Distinguishing Disease and Insect Problems from Environmental Stresses

Biotic versus Abiotic

Catharine Mannion, Ph.D.

UF/IFAS Tropical Research and Education Center

Homestead, FL

http://trec.ifas.ufl.edu/mannion cmannion@ufl.edu

Integrated Pest Management Update 2011

Photos: H. Glenn, UF/IFAS (unless otherwise noted)

Plant Problems

Abiotic

Non-living

 (environmental stresses,
 physiological and other nonbiological factors

Biotic

Living organisms
 (Insects, pathogens, weeds, nematodes, parasitic plants, viruses)

Whatever the cause of the problem or damage, accurate diagnosis is necessary to solve the problem

Diagnosing Problems in the Landscape

- Many abiotic and biotic agents can cause injury
 - Become familiar with common causes of damage
- Landscapes exhibit tremendous variability
 - Diversity in plants, soils, environmental conditions
 - Diversity over time
 - Landscapes are dynamic

Diagnosing Problems in the Landscape

- A problem can have multiple or interacting factors
 - Individual factors may cause injury alone or in conjunction with other factors
- Chronic problems may express subtle symptoms
 - Symptoms may not be obvious (i.e. slow growth)

Abiotic Disorders

- Water issues
- Aeration
- Nutrient deficiencies
- Salinity
- pH
- Temperature
- Sunburn
- Light

- Wind
- Pollution
- Lightening
- Root girdling
- Mechanical injury
- Pesticide phytotoxicity

Similarities in Abiotic and Biotic Plant Problems

- Your plant is chlorotic and dropping leaves
- Could it be caused by:

 Insect

 Temperature Extreme

 Lack of Water

 Disease

Any of these as well as others could be the problem

Biotic Injury

- Other evidence (i.e. presence of an insect, cast skins, frass, fungal spores, etc.
- Biotic injury may spread progressively in a plant or to other plants
- Some biotic problems are specific

Abiotic Injury

- Physical evidence not usually on the plant (i.e. wind damage, herbicide damage, etc)
- Does not usually spread
- May affect numerous plant species

Diagnosing the Problem

- Plant identification
- Identify the symptoms
- Inspect the entire plant
- Inspect the site
- Look for patterns
- Management history
- Test likely causes

Wilting - Browning

Lack of water or inability to take up water

Low temperatures

Biotic agents (microorganisms, nematodes,

insects)

Cold damage to banana

Wilting - Browning

- Plant type Avocado
- Small holes in trunk
- Dark "bluish" streaking

Laurel Wilt Disease

Necrosis (death)

Phytotoxicity from a Fungicide (Daconil)

- Water deficit
- Salt toxicity
- Nutrient deficiency
- Pollution
- Temperature extremes
- Pesticide toxicities
- Biotic agents (i.e. microorganisms, nematodes, insects, mites)

Chlorosis (Yellowing)

- Mottling or irregular patterns; stippling; bleaching
- Biotic agents (i.e. microorganisms, viruses insects, mites); nutrient deficiencies

Chlorosis (Yellowing)

 Palms - good example of specific yellowing patterns due to nutrient deficiencies

Magnesium deficiency in *Phoenix canariensis* showing broad yellow bands along the margins of
 the oldest leaves. (Photo: T. Broschat, UF/IFAS)

Necrosis - Yellowing

- Pay attention to patterns within and among plants
 - Marginal (leaf edges)
 - Size and appearance (blotches, spots)
 - Inteveinal (tissue between veins affected)
 - -Speed of appearance or spread

Water Soaking - Lesions - Edema

Changes in moisture and or temperature

Biotic agents (i.e. microorganisms, viruses insects

Distortion

- Other symptoms
 often accompany
 distortion (chlorosis,
 necrosis, etc)
- Herbicide damage
- Other pesticide toxicity
- Low temperatures
- Insects and mites

Distortion

Defoliation

- Host plant
- Low temperatures
- Herbicide damage
- Deficiency in water, aeration
- Pollution
- Insect, diseases
- Timing and speed of defoliation

Bleeding and Gumming (the flow of sap)

- Water deficit
- Mechanical injury
- Diseases (canker, fungi, bacteria) insects

Plant Galls

- Extremely variable in location, size and shape
- May or may not be damaging to the plant
- Abiotic origins
- Biotic causes include disease organisms, nematodes, insects and mites

Plant Galls

Weed eater or lawn mower damage

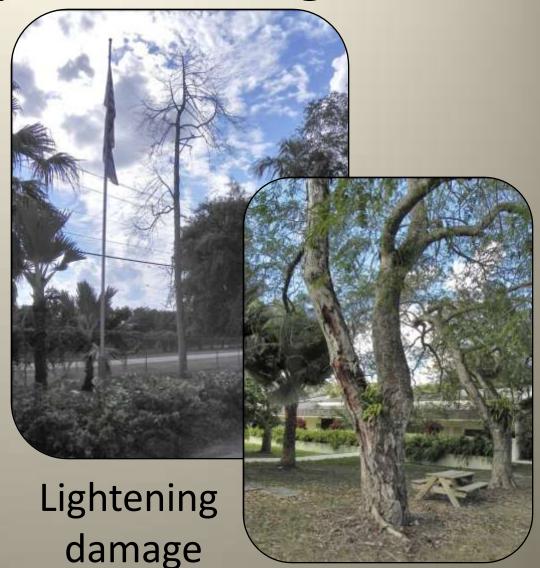
Damage from power lines

Plant Structure

ed Palm Mite

Rat damage

Cannonball fungi



Webbing from psocids

Ascheroni sp.

(entomopathogenic fungi)


Secondary Pests

Abiotic factors often weaken plants making them more susceptible to biotic factors

- For example overwatering can lead to root disease
- Wood boring insects common secondary pests

Expect Additional Problems when Plants Have Been Severely Stressed

Diagnosing Plant Problems

- Detective work
- Familiarity with common problems
- Step by step rule out known causes
- May need tests conducted by professionals
 - Bioassays for diseases, nematodes
 - Soil and water
 - Insect Id
- Use your resources

Catharine Mannion Research and Extension Specialist Ornamental Entomology

University of Florida, IFAS
Tropical Research and Education Center
18905 SW 280th Street
Homestead, FL 33031

305-246-7000 cmannion@ufl.edu http://trec.ifas.ufl.edu/mannion

