# Water: Florida's Lifeblood



Ę





# Outline

- Opener: Water homework exercises
- Presentation: "Water: Florida's Lifeblood"
- Circle question
- Discussion







### Water Homework Discussion

- 1. Discussion about experiences filling out data log for historic water consumption.
- 2. Thoughts about sustainability action plans for conserving water.
  - Goals/actions
  - Barriers

- Solutions
- Individual/household
  - Community







# Goals

4

#### Learning Goals

- Increase understanding of status and trends of Florida's water quantity and quality
- Understand your role in conserving Florida's water and maintaining water quality

#### Action Goals

- Identify strategies to reduce water consumption and protect water quality
  - Choose elements to add to your personal water sustainability plan







# Presentation Outline

- Florida's freshwater resources
  - Status and trends for quantity and quality
  - Challenges

- Policy directions
- What you can do



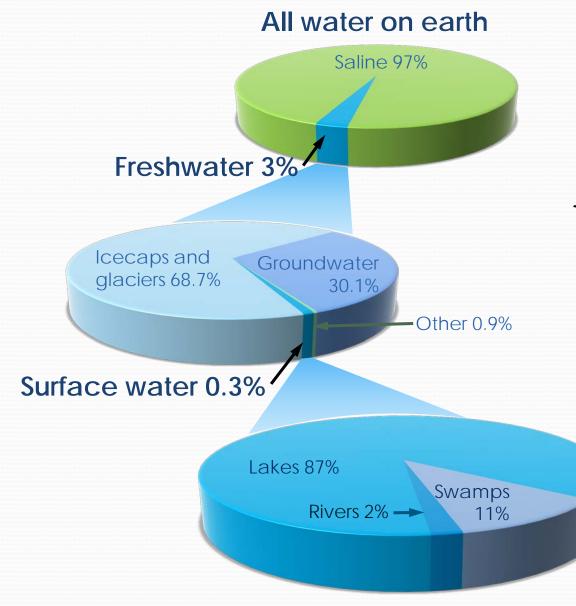
Owl Creek, tributary of Apalachicola River Photo: K. Ziewitz





## Florida's Freshwater

"The pressures of population growth, its accompanying development, and 70 million tourists a year are impacting the state's freshwater, ground water, and saltwater resources ... Major challenges include: maintaining overall water quality and supplies, protecting public health, satisfying competing and rapidly increasing demands for finite quantities of fresh water, minimizing damage to future water reserves, and ensuring healthy populations of fish and wildlife."


> — Florida Department of Environmental Protection, Integrated Water Quality Assessment for Florida, 2014







# Where on Earth is the Water?



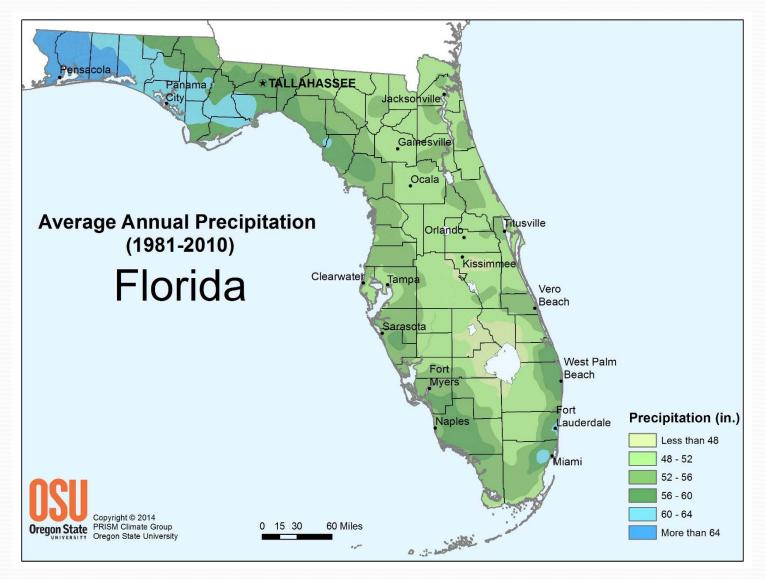
"...if all the water on Earth could be put into a gallon jug, the quantity readily available for human use would be equal to about one tablespoon."

> Data: U.S. Geological Survey Graphic: <u>http://www.pacificwater.org</u>

#### Florida's Freshwater Resources

- 1,700 streams and rivers (11,000 miles)
- 7,800 freshwater lakes
- 700 springs
- 11 millions acres of wetlands
- Underlying aquifers




Wakulla River Photo: K. Ziewitz





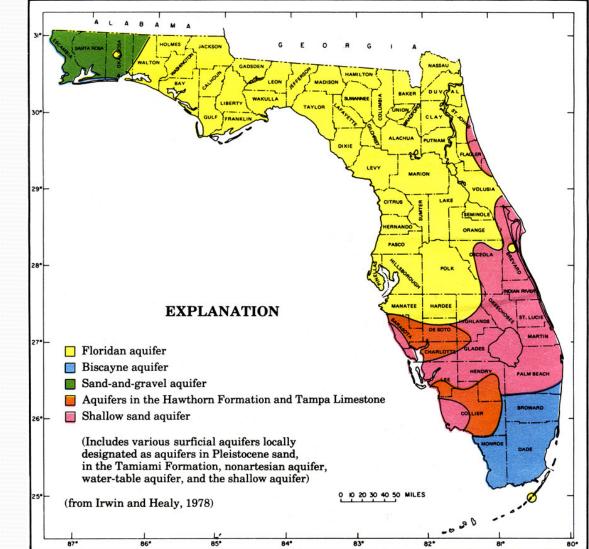


#### Florida's Annual Rainfall, 1981-2010



#### U.S. "Inland" Waters

| State               | Land Area<br>(sq mi) | Water Area<br>(sq mi) | Percent area,<br>water | State         | Land Area<br>(sq mi) | Water Area<br>(sq mi) |   |
|---------------------|----------------------|-----------------------|------------------------|---------------|----------------------|-----------------------|---|
| node Island         | 1,034                | 182                   | 17.6%                  | Arkansas      | 52,035               | 1,143                 | T |
| istrict of Columbia | 61                   | 7                     | 11.5%                  | Texas         | 261,232              | 5,616                 |   |
| puisiana            | 43,204               | 4,562                 | 10.6%                  | Alabama       | 50,645               | 1,058                 |   |
| orida               | 53,625               | 5,027                 | 9.4%                   | Oklahoma      | 68,595               | 1,304                 |   |
| rth Carolina        | 48,618               | 4,052                 | 8.3%                   | California    | 155,779              | 2,833                 |   |
| aryland             | 9,707                | 768                   | 7.9%                   | South Dakota  | 75,811               | 1,305                 |   |
| aine                | 30,843               | 2,314                 | 7.5%                   | Mississippi   | 46,923               | 769                   |   |
| assachusetts        | 7,800                | 486                   | 6.2%                   | Illinois      | 55,519               | 820                   |   |
| nnesota             | 79,627               | 4,763                 | 6.0%                   | Missouri      | 68,742               | 965                   |   |
| ew Jersey           | 7,354                | 436                   | 5.9%                   | Pennsylvania  | 44,743               | 563                   |   |
| laware              | 1,949                | 91                    | 4.7%                   | Ohio          | 40,861               | 474                   |   |
| ermont              | 9,217                | 400                   | 4.3%                   | Idaho         | 82,643               | 926                   |   |
| w York              | 47,126               | 1,989                 | 4.2%                   | Oregon        | 95,988               | 1,068                 |   |
| sconsin             | 54,158               | 1,997                 | 3.7%                   | Montana       | 145,546              | 1,494                 |   |
| w Hampshire         | 8,953                | 328                   | 3.7%                   | Indiana       | 35,826               | 361                   |   |
| uth Carolina        | 30,061               | 1,064                 | 3.5%                   | West Virginia | 24,038               | 192                   |   |
| chigan              | 56,539               | 2,001                 | 3.5%                   | lowa          | 55,857               | 416                   |   |
| onnecticut          | 4,842                | 171                   | 3.5%                   | Wyoming       | 97,093               | 720                   |   |
| aska                | 570,641              | 19,304                | 3.4%                   | Nevada        | 109,781              | 791                   |   |
| ah                  | 82,170               | 2,727                 | 3.3%                   | Nebraska      | 76,824               | 524                   |   |
| ginia               | 39,490               | 1,282                 | 3.2%                   | Hawaii        | 6,423                | 42                    |   |
| shington            | 66,456               | 1,715                 | 2.6%                   | Kansas        | 81,759               | 520                   |   |
| rth Dakota          | 69,001               | 1,698                 | 2.5%                   | Colorado      | 103,642              | 452                   |   |
| eorgia              | 57,513               | 1,412                 | 2.5%                   | Arizona       | 113,594              | 396                   |   |
| ntucky              | 39,486               | 921                   | 2.3%                   | New Mexico    | 121,298              | 292                   |   |
| nnessee             | 41,235               | 909                   | 2.2%                   |               |                      |                       |   |


Table: U.S. Geological Survey; data: U.S. Census Bureau

#### Where's the Water in Florida? Aquifers

11

SUSTAINABLE

Image: http://fcit.usf.edu/florida/maps/pages/8900/f8936/f8936.htm



IFAS Extension

## Florida's "Karst" Topography

- "Swiss cheese" limestone
- Forms close connection between surface and ground water



Karst on Suwannee River Photo: A. Murray, UF







## Florida's "Karst" Topography

 Sinkholes are a prominent feature



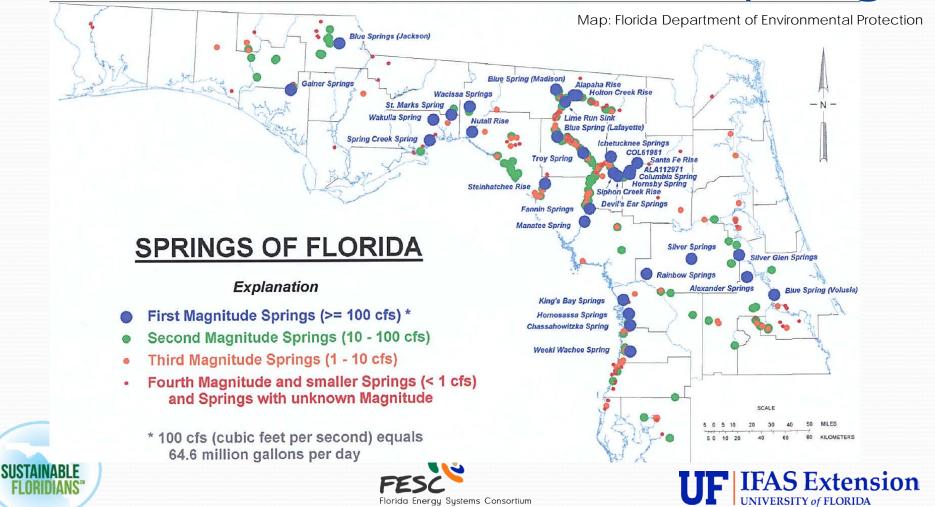
Photo: Randall Orndorff, U.S. Geological Survey







#### Florida's Gems: Natural Springs




USTAINABLE Photo: Swimmers at Fanning Springs. FLORIDIANS<sup>®</sup> Tara Piasio UF/IFAS





#### Florida's Gems: Natural Springs

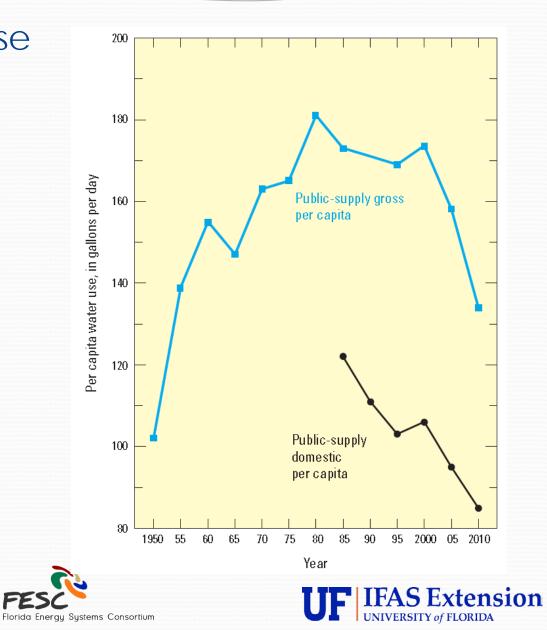


# Snapshots of

#### Historic Water Use in Florida

- 1955:
  - ~2.2 billion gallons per day of fresh groundwater and surface water
  - Population: 3.9 million
- 2010:
  - ~6.4 billion gallons per day of fresh groundwater and surface water
  - Population: 18.8 million





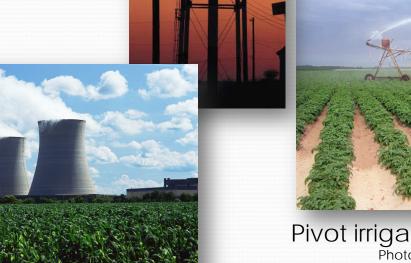



#### Per Capita Water Use Trends

Historcal public-supply gross and domestic per capita water use in Florida, 1950-2010

Source: Figure 9 from Marella, R. L. (2014). Water Withdrawals, Use, and Trends in Florida, 2010






## Where Do We Use It?

1. Agriculture

18

- 2. Public supply
- 3. Power plants



Photos: Microsoft



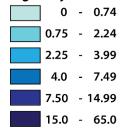


Pivot irrigation on Florida farm Photo: Thomas Wright IFAS



## Impacts of Recreational Water Use




Photo: Thomas Wright, UF/IFAS

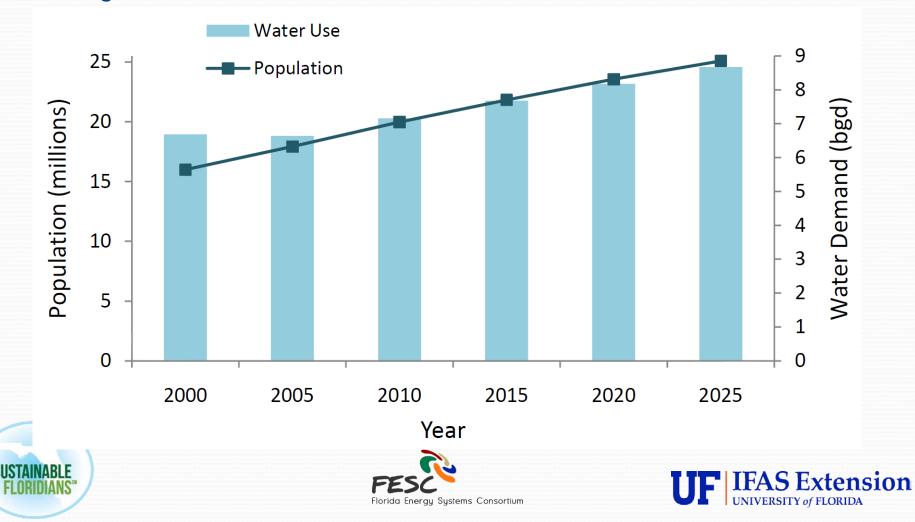
19

SUSTAINABLE

2010 recreational-landscape irrigation water withdrawals by county

#### Mgal/day




Data from: Marella, R. L. (2014). *Water Withdrawals, Use, and Trends in Florida, 2010* (Scientific Investigations Report No. 2014-5088). U.S. Geological Survey.

UNIVERSITY of FLORIDA

Florida Energy Systems Consortium

Graph: Florida Department of Environmental Protection, Sustaining Our Water Resources, 2010

#### Projected Water Use in Florida



#### Effects of Freshwater Overuse

 What will be the effects of continued increase in use of freshwater?

21



Withlacoochee River dock during drought. Photo: Sally Lanigan, UF/IFAS.





## Effects of Freshwater Overuse

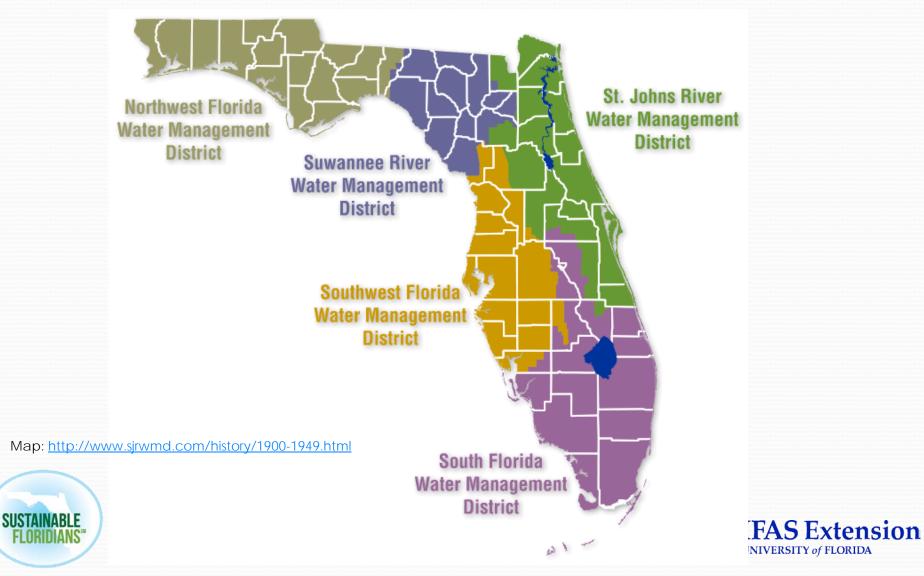
- Overuse has already caused:
  - Rates of consumption exceeding replenishment (net depletion) in parts of South and East Florida
  - Tampa Bay area "water wars"
  - Saltwater intrusion
  - Dried up lakes and sinkholes
  - Damage to natural environments and aquatic wildlife



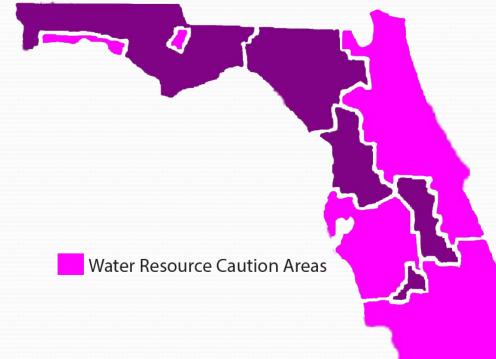




# Projected Impacts of Climate Change


- Expected warming
  - Increase in evaporation losses
  - Likely increase in water demand
- Increased frequency and intensity of extreme weather events
  - Increase in occurrence of droughts or heat waves
  - Increase in heavy rainfall events and stormwater runoff
- Sea level rise
  - Increase in occurrence and rates of salt water intrusion








#### Florida's Water Management Districts



#### Water Resource Caution Areas



Map: Florida Department of Environmental Protection <u>http://www.dep.state.fl.us/water/reuse/wrca.htm</u>







#### Water Resource Caution Areas

- Increased use of reclaimed water helps stem problems
- Caveat: reclaimed water may contain elevated levels of nutrients (nitrogen and phosphorous)



Reclaimed water in Orange County. Photo: Milt Putnam, IFAS







#### Other Water Supply Alternatives

- Drilling new well fields
- Diverting surface water to reservoirs
- Aquifer storage and recovery
- Desalination



Tampa Bay Water's 15.5 billion gallon reservoir Photo: Tampa Bay Water







## What about Desalination?



Tampa Bay Water's desalination plant. Photo: <u>www.swfwmd.state.fl.us</u>



Desalination membranes at Tampa Bay Water's plant. Photo: Tampa Bay Water







# The Energy-Water Nexus

- Lots of energy is required to move water or to heat it.
- Lots of water is required to produce energy.

#### Therefore, saving water saves energy, and saving energy saves water!

 Saving energy while saving water also cuts down on greenhouse gas emissions.







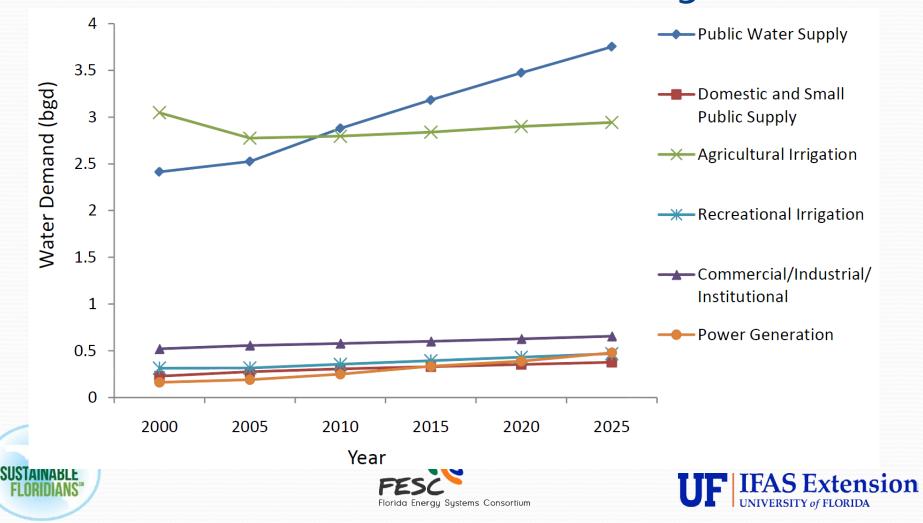
## **Conservation Solutions**

- Less expensive than supply side projects
- Leaves more water in ecosystems and for recreation
- Important part of future water plans for state



Photos: UF/IFAS










Graph: Florida Department of Environmental Protection, Sustaining Our Water Resources, 2010

## Residential Use is Key



#### Promoting Water Conservation

- What about price structure? Consider these relative costs:
  - Cost of tap water in Gainesville (July 2010):
    - \$0.00256 per gallon
  - Cost of gasoline (July 2010):
    - \$2.56 per gallon
  - Cost of typical carbonated beverage:
    - \$8 per gallon

32

- Cost of water in Myanmar (July 2010):
  - \$0.0384 per gallon (15 times as much as in US)

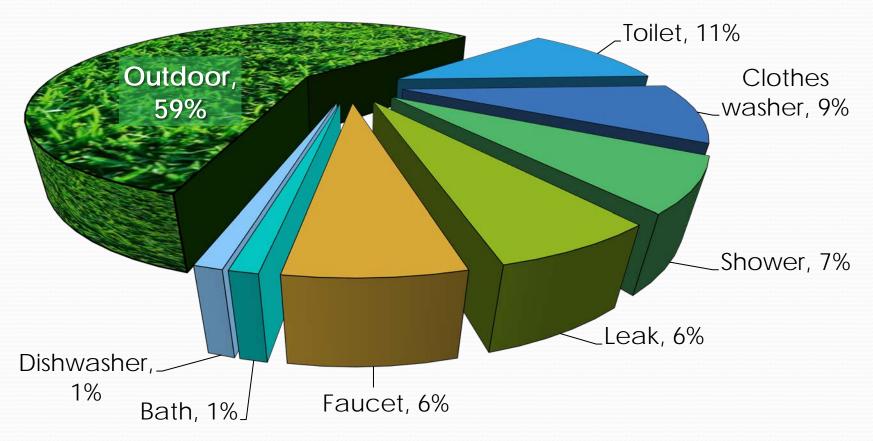
Florida Energy Systems Consortium





#### Promoting Water Conservation

- Other ways to promote conservation?
  - Regulation
  - Incentives
  - Social marketing
- Which one(s) do you think are most effective?








#### Where To Start? Reduce outdoor water use.

#### **Residential Average Water Use**



Graph: American Water Works Association Research Foundation, End Uses of Water

## Outdoor

35

# Water Conservation Principles

- Reduce (best):
  - Reduce or eliminate irrigated area
  - "Hydro-zone" and plant for establishment irrigation only
  - Reduce irrigation window
  - Use "smart irrigation controllers"
  - Check for and repair leaks







## Outdoor

36

# Water Conservation Principles

#### • Reuse (good):

- Rain harvesting and stormwater reuse
  - Rain barrels or cisterns, rain gardens, etc.
- Gray water reuse from shower/bath/sinks, etc.







#### **Example: Madera Model Home**



#### **Exfiltration Tank**

#### **Reinforced Turf for Parking**



37

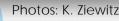
**Smart Irrigation Controllers** 





Photos: Program for Resource Efficient Communities / UF - IFAS

# Florida-Friendly Landscaping Goals


- Reduce water consumption
- Protect water quality
- Maintain hydrological integrity
- Design for both humans and wildlife















# Florida-Friendly Landscaping Core Principles

- Right plant, right place
- Water efficiently
- Fertilize
  appropriately
- Mulch
- Attract wildlife

- Manage yard pests responsibly
- Reduce stormwater runoff
- Recycle
- Protect the waterfront

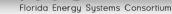
See The Florida Yards & Neighborhood Handbook for details!







# Water-Wise Options...


#### Homes with no turf to water

40

SUSTAINABLE







## Indoor

41

## Water Conservation Priorities

- Tame the toilet:
  - Old ones: 8 gallons per flush (gpf); new ones are 1.6 gpf or less.
  - Consider "high efficiency toilets."



Dual flush toilet: Uses 0.8 to 1.6 gpf

Photo: Sonoma County Water Agency



Composting toilet: Uses 0 gpf!

Photo: Environmental Protection Agency





#### Indoor

42

## Water Conservation Priorities

- Stop leaks:
  - Toilet flapper valves often leak.
- Switch to ENERGY STAR™ qualified washers.
- Install faucet aerators and low-flow showerheads.
  - Also, check for leaks while you are at it.







#### What About Water Quality?

- Florida Department of Environmental Protection describes Florida groundwater quality as "predominantly in good condition", however...
  - Nutrient levels are increasing in some areas
  - Bacteria (as total coliform) is increasing
  - Salinity is rising







#### What About Water Quality?

- Of 369 lakes tested between 1999-2008:
  - 52 improving;
  - 260 stable;
  - 57 degrading

For 966 lakes, trends were unknown



Photo. K. Ziewitz







# Sources of Pollution

#### Point sources

- Industrial plant discharges
- Wastewater treatment plant discharges
- Underground storage sites



Photo: JunkDzine







# Sources of Pollution

- Non-point sources
  - Agriculture
  - Septic tanks
  - Stormwater runoff
  - Fertilizer
  - Urban development
  - Pet waste



Photo: Microsoft







#### What are "Impaired Waters"?

- "Impaired" waters do not meet water quality standards for the respective "<u>designated use</u>:"
  - Class I: Potable water supplies (drinking water)
  - Class II: Shellfish propagation or harvesting
  - Class III\*: Fish consumption, recreation, propagation & maintenance of a healthy, well-balanced population of fish & wildlife
  - Class IV: Agricultural water supplies
  - Class V: Navigation, utility, and industrial use







## Florida's "Impaired Waters"

- Florida's most common water quality problems:
  - Excess nitrogen

48

- Excess phosphorous
- Low dissolved oxygen levels
- Fecal coliform bacteria
- Mercury pollution
- Other common pollutants:
  - Hydrocarbons (oil and gasoline)
    - Grass clippings





Source: Florida Department of Environmental Protection

# Harmful Algal Bloom

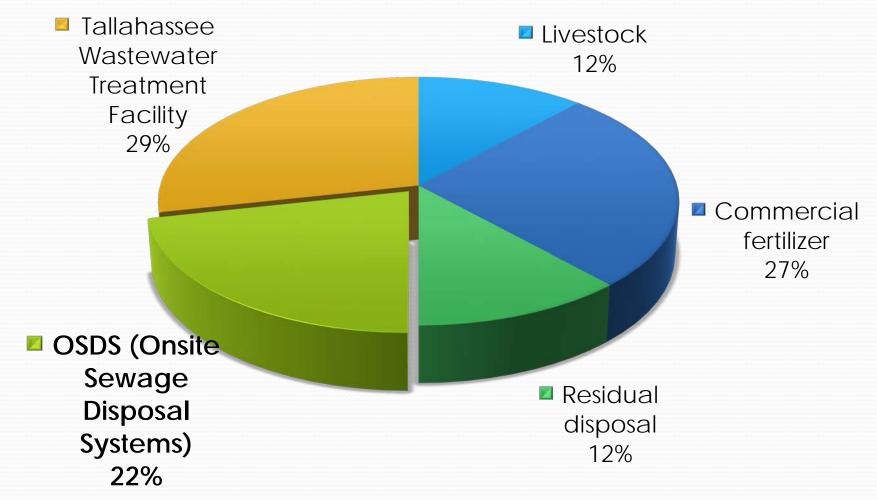








# What Can I Do?


- Maintain septic tanks
  - Pump out regularly (~every 3 years).
  - Avoid overwhelming the system.
  - Dispose of household cleaners or pharmaceuticals properly.
  - Don't drive over the drainfield.
  - Consider installing a new, performancebased nitrogen-reducing unit.







Case Study: Nitrogen Sources from Human Activity in Wakulla & Leon Counties



Graphic: Wes MacLeod UF/IFAS

Relative contribution from Anthropogenic Sources 1990-1999

Average nitrogen loading. Nitrogen from atmospheric deposition is assumed to be taken up by vegetation and is not included in the pie diagram. Chellette, Pratt and Katz, 2002.

#### Florida's Water Management Districts

- Basin Management Action Plans (BMAPs) developed by Florida Department of Environmental Protection and stakeholders to allocate reductions necessary to meet the Total Maximum Daily Load (TMDL).
- Citizens can get involved contact your water management district.



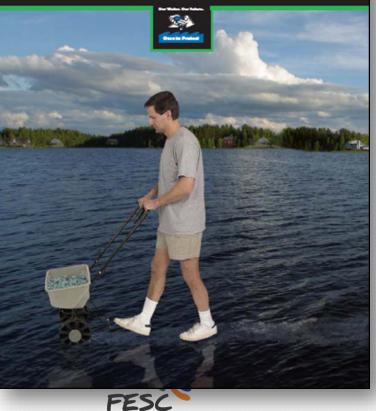




## So, What Can I do

# to Protect Water Quality?

- Use fertilizer very carefully
  - Is it needed?


- If so, what nutrients are needed?
- If using inorganic fertilizers, choose slowrelease products.
- Clean up any spills.
- Don't fertilize before predicted rains.
- Avoid "weed and feed" products.
- Keep at least a 10-foot low maintenance zone by water bodies.
- Avoid irrigation run-off.





# What Can I do to Protect Water Quality?

Remember, you're not just fertilizing your lawn



Florida Energy Systems Consortium

Photo: Washington State Puget Sound Action Team





# Other Ways to Protect Water Quality

- Limit use of hazardous substances, including toxic household cleaners and pesticides
- Clean up pet wastes
- Don't flush medicines down the sink or toilet



Photo: Washington State Puget Sound Action Team







#### Landscape-Greenhouse Gas Connections



Photo: Pierce Jones, Program for Resource Efficient Communities



56



Photo: Josh Wickham, UF/IFAS



# Circle Question

What is one of your favorite Florida water spots?

Have you seen this place change over time?

If so, what factors are causing the change?







# **Discussion Questions**

- Do you think Floridians are prepared to face water shortages? How serious is your community about water conservation?
- Water expert Sandra Postel writes that we need to be more conscious of the "water cost" of our daily activities and make better choices, from dietary choices to landscaping. How can "water costs" be made more visible?







# **Discussion Questions**

- What are some obstacles to reducing the amount of water used for lawn watering?
- Considering options to promote conservation—regulation, pricing, incentives, social marketing—which ones do you think are most effective?
- What are some ways you have begun to think about water differently?
- What else would you like to discuss about water?







# End of Presentation





